An Experimental Study of Vote Trading

Thomas Palfrey
California Institute of Technology

Alessandra Casella
Columbia University

SOCIAL SCIENCE WORKING PAPER 1445
December 2018
An Experimental Study of Vote Trading*

Alessandra Casella† Thomas Palfrey‡

December 17, 2018

Abstract

Vote trading is believed to be ubiquitous in committees and legislatures, and yet we know very little of its properties. We return to this old question with a laboratory experiment. We posit that pairs of voters exchange votes whenever doing so is mutually advantageous. This generates trading dynamics that always converge to stable vote allocations—allocations where no further improving trades exist. The data show that stability has predictive power: vote allocations in the lab converge towards stable allocations, and individual vote holdings at the end of trading are in line with theoretical predictions. However, there is only weak support for the dynamic trading process itself.

JEL Classification: D70, D72, P16

Keywords: Voting, Majority Voting, Vote Trading, Experiments.

*We thank Enrico Zanardo, Kirill Pogorelskiy and Manuel Puente for research assistance, and participants to numerous seminars and conferences for comments. We especially wish to thank Micael Castanheira, Andrew Gelman, Michel LeBreton, Debraj Ray, Richard Van Veelden, Rajiv Vohra, and Alistair Wilson for detailed comments and suggestions. The National Science Foundation (SES-1426560) and the Gordon and Betty Moore Foundation (SES-1158) provided financial support. Part of the research was conducted while Casella was a Straus Fellow at NYU Law School and Palfrey was a Visiting Scholar at the Russell Sage Foundation. The hospitality and financial support of both institutions are gratefully acknowledged. An earlier version of this paper was part of a working paper entitled "Trading Votes for Votes: A Decentralized Matching Algorithm".

†Economics and Political Science, Columbia University, 420 West 118th Street, New York, NY 10027. NBER and CEPR, ac186@columbia.edu

‡Corresponding author. HSS Division, Mail Code 228-77, California Institute of Technology, Pasadena, CA 91125 and NBER, trp@hss.caltech.edu
1 Introduction

Considering the very rich literature on voting and committee decision-making, the scarcity of systematic studies on vote trading is remarkable. We use "vote trading" to indicate the exchange of votes on some issues for votes on other issues—lending support to somebody else’s preferred position in exchange for that person’s support of one’s own preferred position on a different issue. Political scientists have long emphasized the vital role of vote trading and logrolling in collective decision making. Common sense, personal experience, empirical and historical studies all suggest their extent and importance.

To many, such behavior is not only widespread, but marginally unethical. A legislator voting against the interests of the voters who elected him runs counter to basic democratic principles of representation. However, well over a century ago, an early pioneer in political science, Arthur F. Bentley, argued that this view is shortsighted and unrealistic; that logrolling is vital to the practical business of legislatures, which would essentially cease to function if members of legislatures were unable or unwilling to trade votes:

"Log-rolling is a term of opprobrium. [...] Log-rolling is, however, in fact, the most characteristic legislative process. [...] It is compromise, not in the abstract moral form, which philosophers can sagely discuss, but in the practical form with which every legislator who gets results through government is acquainted. It is trading. It is the adjustment of interests. Where interests must seek adjustment without legislative forms, [...] they have no recourse but to take matters in their own hands and proceed to open violence or war. When they have compromised and [...] process
can be carried forward in a legislature, they proceed to war on each other, with the killing and maiming omitted. It is a battle of strength, along lines of barter. The process is a similar process, but with changes in the technique. There never was a time in the history of the American Congress when legislation was conducted in any other way."

-from The Process of Government, 1908 (pp.370-371)

There is a relatively small literature that attempts to document specific cases of vote trading, mostly in the context of the U.S. Congress. Mayhew’s (1966) book is the first comprehensive study, focusing on agricultural bills in the house, and there is much anecdotal evidence in earlier research. Stratmann (1992) and Stratmann (1995) identify roll call votes where a legislator votes against his constituency’s interest and exploit econometric techniques to attribute a substantial fraction of such votes to vote trading. More recently, Guerrero and Matter (2016) measure the extent of vote trading by identifying reciprocity networks in roll call voting and bill cosponsorship through big data techniques.¹

Outside these studies, systematic evidence on vote trading remains scarce, in contrast to the common belief in its prevalence. The disparity between evidence and perceptions can be attributed in part to vote trading’s tainted reputation—representatives voting against their constituents’ interests have no incentive to advertise it—and in part to institutional features that effectively serve to mask vote trading—for example the committee system in the US Congress, through which logrolling is

¹Two key assumptions in the latter approach are that vote trades are pairwise and that a necessary condition for a vote trade to occur is that both voters are strictly better off, assumptions that are consistent with our experimental implementation of vote trading and the theoretical model we use to organize the data.
embedded in the write-up of the bills. But more generally, the belief that vote trading is common is due to our anecdotal experience of its ubiquity wherever power is delegated to committees, across institutions, settings and countries, not only in legislatures but also in relatively informal settings: professional associations, school boards, faculty committees, neighborhoods and buildings’ owners associations, cooperatives, cultural and civic institutions boards, and many more, all settings that do not lend themselves easily to the collection and analysis of systematic data on vote trading.

The scarcity of empirical studies is matched by a scarcity of rigorous theoretical research. Notwithstanding general agreement on the importance of understanding vote trading, after an early, enthusiastic wave of work in the 1960’s and 70’s,\(^2\) the theoretical literature mostly ran dry. One reason is that the problem is difficult. Consider the simplest framework, the natural first step studied by Riker and Brams (1973): a committee with an odd number of members considers several binary proposals, each of which may pass or fail. Voters can trade votes with each other without enforcement or credibility problems; after trades are concluded, voting occurs by majority rule, proposal by proposal. Every committee member can be in favor or opposed to any proposal and has separable preferences across proposals, with different cardinal intensities. Even in this environment, vote trading is a difficult problem: trades take place without the equilibrating forces of a price mechanism, impose externalities on non-trading voters, change the overall distribution of votes, and with

it other voters’ power to affect outcomes, and induce further trades.

The use of laboratory methods to study vote trading seems particularly appropriate given both the difficulty of collecting historical data and the ability of controlled experiments to address fundamental, micro-level questions of behavior, the crucial questions of why, when, and how vote trades emerge from the chaos of committee wheeling and dealing. And yet, if empirical and theoretical studies of vote trading are not numerous, experimental studies are even fewer. To our knowledge, the study closest to ours is McKelvey and Ordeshook (1980), but the differences in methodologies (face-to-face exchanges in McKelvey and Ordeshook, computer-mediated platforms in this paper) and especially in objectives (a focus on alternative cooperative solutions in McKelvey and Ordeshook, on dynamics in this paper) make a direct comparison impossible.³

We think of this paper as a first exploratory step towards testing a full-fledged non-cooperative understanding of the dynamics of vote trading. In studying their original framework, Riker and Brams conjectured that restrictions on trading may be needed to prevent continuing cycles: one exchange of votes changes the outcomes that would be reached if voting were held, and hence makes other voters consider new trades, which again induce further trading. Evaluating whether Riker and Brams’ conjecture is correct requires a rigorous definition of stability and a formal model of dynamic adjustment. Such a theoretical framework is developed in Casella and Palfrey (2017), where stability is identified with an allocation of votes such that no

³Fischbacher and Schudy (2014) conduct a voting experiment to examine the possible behavioral role of reciprocity when a sequence of proposals come up for vote. There is no explicit vote trading, but voters can voluntarily vote against their short term interest on an early proposal in hopes that such favors will be reciprocated by other voters in later votes.
pair of voters can trade votes and induce an outcome they both prefer. Dynamic adjustment occurs via an algorithm that selects, with some arbitrary rule, a pair of voters with strictly improving trades; if the trade induces stability, then trading stops; if not, a new pair of voters is selected. The process continues until a pairwise stable allocation is reached. Contrary to the long-standing conjecture of Riker and Brams, one can prove that such a process is always guaranteed to converge to a stable vote allocation: continuing cycles of trading will not occur. This theoretical framework - a definition of stability and the specification of a dynamic trading process - generates strong predictions that can be tested in an experimental setting: specific predictions about final vote allocations, proposals’ outcomes, and even exact sequences of trades.

The experimental design employs three treatments, corresponding to three different preference profiles. All treatments have five member committees, and either two or three issues. In each case, the stable outcome reachable through the theoretical trading dynamics is unique. The experiment produces two findings that provide empirical support for the theoretical framework. First, we find that stability is a useful predictive tool. In all treatments, two thirds or more of the final vote allocations after trading are stable. Second, the final vote allocations in the experiment are in line with the theoretical predictions. Across all treatments, across all voters, across all proposals, in every case in which the stable allocation is predicted to reflect a net purchase of votes, or a net sale, we observe it in the data.

And yet the dynamic process generating the final outcomes departs significantly from the theoretically posited dynamics. The main discrepancy, and this is our third result, is that while we observe the gain-searching trades predicted by the theory, a
A large fraction of these trades do not lead to strict improvement for the two voters engaging in the trade. Rather, the trades increase the number of votes held on high-value issues without changing the outcomes associated with the new vote allocation. Interestingly, trades that increase the number of votes on high-value issues are not predictive of final vote allocations: trading stops when no opportunity for payoff gains remains, as in our stability concept, even when it is still possible to increase votes on high-value proposals.

Shifting votes towards higher-value proposals suggests some form of prudential behavior. The theoretical trading dynamic is instead myopic: trades are considered profitable if the vote allocation immediately resulting from the trade strictly improves the payoff of the traders, relative to the current vote allocation. The trading data from the experiment suggest that the myopia assumption should be considered more carefully. We conclude the paper with an exploration of possible extensions of the model to allow for farsighted vote trading, and re-examine our experimental data in this new light. We show that the definition of farsightedness leads directly to some simple predictions that can be confronted with the data. In our experiment, fully farsighted behavior is soundly rejected.

Methodologically related to our trading protocols are some recent experiments on decentralized matching, in particular Echenique and Yariv (2013). In those experiments, as in ours, a central finding is the extent to which the experimental subjects succeed in reaching stable outcomes. The details of those environments, however,

4 Other related works on matching are Nalbantian and Schotter (1995), Niederle and Roth (2011) and Pais, Pinter and Vesztegz (2011). These papers have incomplete information and study the effects of different offer protocols and other frictions. Kagel and Roth (2000) study forces leading to the unraveling of decentralized matching.
differ substantially from ours, and the substantive questions we ask are specific to vote trading. There is a more distant relationship between the present paper and experimental studies of network formation. In network models, an outcome is a collection of bilateral links between agents, represented by either a directed or undirected graph, and the structure of payoffs is very different from vote trading games. Some classic theoretical analyses of network formation, however, exploit a pairwise stability concept, as we do (Jackson and Wolinsky 2000). Most experimental papers rely on a different protocol—a simultaneous move game where agents form links unilaterally—but some recent papers are closer to our approach: Carrillo and Gaduh (2016) and Kirchsteiger et al. (2016) examine dynamic sequential link formation with mutual consent.\footnote{Both papers use the random link arrival protocol of Jackson and Watts (2002): in each period one link is randomly added to the network, and the two newly connected players simultaneously decide to accept or reject the link.}

Finally, if seen as a trading experiment, in the spirit of good markets experiments, a peculiarity of our design is the lack of a common unit of value. That is, these are barter markets. To our knowledge, experimental studies of barter markets are rare. Ledyard, Porter and Rangel (1994) is an example that demonstrates the challenges to both design and data analysis.

The paper proceeds as follows. The next section briefly summarizes the theoretical model and results on which our experiment is based; section 3 discusses the experimental design; section 4 reports the experimental results, and section 5 concludes. The instructions from a representative experimental session are available in an appendix online.
2 The Model

2.1 The Voting Environment

A committee of N (odd) voters must approve or reject each of K independent binary proposals, a set denoted by P. Committee members have separable preferences represented by a profile of values, Z, where z_i^k is the value attached by member i to the approval of proposal k, or the utility i experiences if k passes. Value z_i^k is positive if i is in favor of k and negative if i is opposed. Proposals are voted upon one-by-one, and each proposal k is decided through simple majority voting.

Before voting takes place, committee members can trade votes. Vote trades can be reversed if the parties to the trade decide to do so, but the agreements suffer no credibility or enforcement problems: it is helpful to think of votes as physical ballots, each one tagged by proposal, and of a trade as an exchange of ballots. After trading, a voter may own zero votes over some proposals and several votes over others, but cannot hold negative votes on any proposal. Denote by v_i^k the votes held by voter i over proposal k, denote by $V_i = (v_i^1, ..., v_i^K)$ the set of votes held by i over all proposals, and call $V = (V_1, ..., V_N)$ a vote allocation, i.e., the profile of vote holdings over all voters and proposals. The initial vote allocation is denoted by V^0, and we set $V_i^0 = (1, ..., 1)$ for all i. That is, prior to any trade, each voter has a single vote over each proposal. The set V contains all feasible vote allocations:

$$V \in V \iff \sum_i v_i^k = N \text{ for all } k \text{ and } v_i^k \geq 0 \text{ for all } v_i^k \in V.$$

\footnote{Note that $\sum_k v_i^k \neq K$ is feasible because we are allowing a voter to trade votes on multiple issues in exchange for one or more votes on a single issue. Of course, the aggregate constraint $\sum_i \sum_k v_i^k = NK$ must hold.}

9
Given a vote allocation V, when voting occurs, each voter’s dominant strategy is to cast all votes in his possession over each proposal in the direction the voter sincerely prefers—in favor of P_k if $z^k_t > 0$, and against P_k if $z^k_t < 0$. $P(V) \in P$ indicates the set of proposals that receive at least $(N+1)/2$ favorable votes, and therefore pass; thus it can be called the outcome of the vote if voting occurs at allocation V. Note that with K independent binary proposals, there are 2^K potential outcomes (all possible combinations of passing and failing for each proposal). Finally, the utility of voter i if voting occurs at V is denoted by $u_i(V)$: $u_i(V) = \sum_{k \in P(V)} z^k_t$.

Although the theory allows for trading within coalitions of arbitrary size, in the experiment trades are restricted to be bilateral. We impose such a constraint in part because pairwise trading is typically considered more empirically relevant, and in part to limit complexity in what already is an unusually complicated experimental platform. We thus specialize the model to pairwise trades only.

The focus is on the properties of vote allocations that hold no incentives for further trading. Define:

Definition 1 An allocation $V \in \mathcal{V}$ is stable if there exists no pair of voters i, i' and no $\tilde{V} \in \mathcal{V}$ such that $\tilde{V}_j = V_j$ for all $j \neq i, i'$, and $u_i(\tilde{V}) > u_i(V)$, $u_{i'}(\tilde{V}) > u_{i'}(V)$.

Note that a stable vote allocation always exists: a feasible allocation of votes that yields dictator power to a single voter i is trivially stable: no exchange of votes involving voter i can make i strictly better-off; and no exchange of votes that does

7 We assume that all preferences are strict, and hence rule out $z^k_t = 0$ for all k and all i.
8 Riker and Brams (1973) for example, argue that the difficulty of organizing a coalition makes non-pairwise trading unlikely. The restriction to pairwise trades is also consistent with Guerrero and Matter’s (2016) empirical strategy.
not involve voter i can make anyone else strictly better-off. The interesting question is not whether a stable allocation exists, but whether, or under what conditions, sequential decentralized trading leads to stable vote allocations.

2.2 Trading Dynamics

To answer the question, the theory needs to specify the dynamic process through which trades take place. The first step is the following definition.

Definition 2 A trade is **minimal** if it consists of a minimal package of votes such that both members of the pair strictly gain from the trade.

By focusing on minimal trades, complex trades are decomposed into sequences of elementary trades. In particular, multiple welfare-improving trades cannot be bundled, and zero-utility trades cannot be bundled with strictly welfare-improving trades.\(^9\)

Although the literature does not make explicit reference to an algorithm, the sequential myopic trades envisioned by Riker and Brams (1973) and Ferejohn (1974) lend themselves naturally to such a formalization. In line with these earlier analyses, **Pivot Algorithms** are defined as sequences of trades yielding myopic strict gains to both traders:

Definition 3 A **Pivot Algorithm** is any mechanism generating a sequence of trades in the following way: Start from the initial vote allocation V^0. If there is no minimal

\(^9\)The focus on minimal trades is consistent with the experimental design, where only elementary trades are possible.
strictly improving trade, stop. If there is one such trade, execute it. If there are multiple improving trades, choose one according to some tie-breaking rule R. Continue in this fashion until no further improving trade exists.

Rule R specifies how the algorithm selects among multiple possible trades; for example, R may select each potential trade with equal probability; or give priority to trades with higher total gains; or to trades involving specific voters. The definition describes a family of Pivot algorithms, spanning all possible R rules.

Pivot trades are not restricted to two proposals only: a voter can trade his vote, or votes, on one issue in exchange for the other voter’s vote(s) on more than one issue. The only constraint is that trades be minimal: any reduction in the number of votes traded prevents the trade from being strictly payoff-improving for at least one of the two voters. If a trade is welfare improving and minimal, it is a legitimate trade under Pivot.10

Trades are required to be strictly welfare improving for the participating pair. That means that pivotal votes must be traded: trades of non-pivotal votes cannot affect outcomes and thus cannot induce changes in utility. More than that: since trades are restricted to be minimal, only pivotal votes can be traded. It is this property, anticipated by Riker and Brams, that gives the name to the algorithms.

10Ruling out the bundling of multiple payoff improving trades is for simplicity only. Ruling out the bundling of zero-utility trades with welfare improving trades plays instead a substantive role. Zero-utility trades cause no immediate gains or losses, but affect the feasibility of future profitable trades. Allowing them to be bundled could in principle affect the dynamics of the vote allocations, without the discipline provided by the requirement of payoff gains.
2.3 Pivot-Stable Allocations

An obvious question to ask is whether trading under Pivot algorithms will ever stop: in principle there is nothing to rule out the possibility of trading cycles. Casella and Palfrey (2017) show that with pairwise trading the answer to the question is positive: for all K, N, Z, all Pivot algorithms converge to a stable vote allocation in a finite number of steps. The term "all Pivot algorithms" refers to the arbitrariness of the choice rule R: convergence is guaranteed for any R.

The generality of the result is unexpected: the Pivot algorithms always reach a stable vote allocation, regardless of the number of voters and proposals, for all (separable) preferences, and regardless of the order in which different possible trades are chosen. No such general result applies, to our knowledge, to other games in which successive moves occur in the absence of an equilibrating price process—for example in matching, or network formation, or barter trading, all cases in which convergence to stability requires some randomness in rule R. In vote trading, Riker and Brams (1973) conjectured that convergence required limiting the number of allowed trades per proposal; Ferejohn (1974) believed that convergence may fail.

In fact the intuition is surprisingly simple. When trades occur under a Pivot algorithm, both voters trade away votes on proposals they value less (on which they have a relatively low $|z_i^k|$), in exchange for votes on proposals they value more. Given the current vote holdings for voter i, we can define the total intensity-weighted value of i’s vote holdings, or score, as $S_i(V_i) = \sum_k |z_i^k|v_i^k$. Because $S_i(V_i)$ depends

11 Randomness in R ensures that any cycle will be broken. See Roth and Vande Vate (1990), and Diamantoudi et al. (2004) for matching; Jackson and Watts (2002) for network formation games; Feldman (1973) and Green (1974) for barter trading.
on i’s vote holdings, but not on whether i wins or loses any issue, when i trades under a Pivot algorithm $S_i(V_i)$ increases, and therefore so does the total group score, $S(V) = \sum_i S_i(V_i)$. Since there are a finite number of issues and votes, $S(V)$ is bounded above, and thus at most a finite number of pairwise-improving trades are possible for any Pivot algorithm.

Any stable vote allocation reachable by a Pivot algorithm is called a **Pivot-stable Vote Allocation**, and any outcome associated with a Pivot-stable vote allocation a **Pivot-stable Outcome**.

Vote trading environments are unusually complex: votes’ values depend on their pivotality, and thus change with others’ allocations; trades by others affect the desirability of further trades, and thus a single trade can generate a whole chain of new exchanges; externalities ensure that individuals’ welfare depends on others’ trades; no continuous price exists. Pivot algorithms are simple, intuitive rules, describing plausible trades in such a complicated environment. Their simplicity allows some conceptual progress, as in the stability result we just described. But we focus on them for a second reason too: we conjecture that they may have predictive power. We now turn to testing the Pivot algorithms in the laboratory.

3 The Experiment

The experiment was conducted at the Columbia Experimental Laboratory for the Social Sciences (CELSS), with Columbia University registered university students recruited from the whole campus through the laboratory’s ORSEE site. No subject
participated in more than one session. After entering the computer laboratory, the students were seated randomly in booths separated by partitions; the experimenter then read aloud the instructions, projected views of the computer screens to be seen during the experiment, and answered all questions publicly. Because the design of the trading platform presents some challenges, we describe it here is some detail.

At the start of each treatment, each subject’s computer screen displayed a table with each subject’s value per issue (in experimental points), and vote holdings. We refer to this matrix as the vote table. The interface and the instructions associated the two alternatives for each issue, Pass or Fail, with two colors, Orange (Pass) and Blue (Fail). Each individual’s values were written in the color of the individual’s preferred alternative. All experimental values were positive and indicated earnings from one’s preferred alternative winning, relative to zero earnings if it lost. The vote table also showed the votes totals on each issue and the points the subject would win if voting were held immediately. Each subject started with one vote on each issue.

After having observed the matrix of values and the vote allocation, a subject could post a bid for a vote on one of the issues, in exchange for his vote on a different issue. The bid appeared on all committee members’ monitors, together with the ID of the subject posting the bid. A different subject could then accept the bid by

12 Sample instructions are provided in the appendix.
13 The computerized trading platform was implemented using the Multistage software program, an open source software developed at Caltech’s Social Science Experimental Laboratory (SSEL) by Chris Crabbe. The software is available for public download at http://multistage.ssel.caltech.edu:8000/multistage/.
14 Thus, for example, $z_i^1 = -300$ in the notation of the model would appear on the screen as voter i having a value of 300 for proposal 1 highlighted in Blue.

15
clicking the offer and highlighting it.15

A central feature of vote trading is that the preferences and vote holdings of the specific individuals making a trade determine the effect of the trade. Contrary to standard market experiments, then, subjects must not only post potentially profitable bids, but also consider the specific identity of their trading partner. In adapting the bidding platform used in market experiments, we added a confirmation step. After a bid was accepted, a window appeared on the bidder’s screen detailing the effects of that specific trade—what the outcome would be upon immediate voting—and asking the bidder to confirm or reject the trade. If the trade was rejected, a message appeared on the screen of the rejected trade partner, informing him of the rejection; trading then continued as if the bid had never been accepted (thus the bid remained posted and available for others to accept). If the bidder confirmed the trade, a popup window with the updated vote table appeared on all screens for 10 seconds and trading activity was paused during that 10 second interval, to give traders time to study the new vote allocation that resulted from the trade. The window also reported the post-trade voting outcome that would result if voting were to occur immediately. The vote table that was always visible on the main screen was also updated immediately.

The market was open for three minutes.16 However, in a market where each concluded trade can trigger a new chain of desired trades, it is important to ensure adequate time for all desired trades to be executed. For this reason the time limit

15Sample screenshots are provided in the appendix.

16The market was open for only two minutes in the two-proposal treatment, \textit{AB}, because the extent of possible trading was more limited.
was automatically extended by 10 seconds whenever a new trade was concluded.

The theory allows for trades of multiple votes and over multiple proposals, but with the matrices of values assigned to subjects during the experiment minimal Pivot trades would amount to trades of a single vote on one issue against a single vote on a different issue. Thus, in the experiment we allowed only such trades, with the goal of limiting the complexity of the task without affecting the theoretical predictions. No bid could be posted if a subject did not have enough votes to execute it if accepted; thus a voter could post multiple bids only as long as he had enough votes to execute them all, had all been accepted. Posted bids could be canceled at any time, an important feature in a market where somebody else’s executed trade can make an existing posted bid suddenly unprofitable.

Once the market closed, voting took place automatically, with all votes on each issue cast by the computer in the direction preferred by each subject. Then a new round started.

The experiment consisted of three treatments, AB, $ABC1$, and $ABC2$, each corresponding to a different matrix of values. In all three treatments, the size of the voting committee was five ($N = 5$), while the number of issues depended on the treatment: $K = 2$ in treatment AB, and $K = 3$ in treatments $ABC1$, and $ABC2$. In each committee, subjects were identified by ID’s randomly assigned by the computer, and issues were denoted by A and B (in treatment AB), and A, B and C (in treatments $ABC1$ and $ABC2$). Each session started with two practice rounds; then three rounds of treatment AB, and then five rounds each of $ABC1$ and $ABC2$, 17
alternating the order.\footnote{Two of the sessions had only two treatments: AB and $ABC1$ in one case, and AB and $ABC2$ in the other.} We did not alternate the order of treatment AB because its smaller size ($K = 2$) made it substantially easier for the subjects, and thus we used it as further practice before the more complex treatments. This is also the reason for the smaller number of rounds (three for AB, versus five for $ABC1$ and $ABC2$).

Committees were randomly formed, and ID’s randomly assigned at the start of each new treatment, but the composition of each group and subjects’ ID’s were kept unchanged for all rounds of the same treatment, to help subjects learn. All but one sessions consisted of 15 subjects, divided into three committees of five subjects.\footnote{One session had only ten subjects, divided into two groups.} At the end of each session, subjects were paid their cumulative earnings from all rounds, converting experimental points into dollars via a pre-announced exchange rate, plus a fixed show-up fee. Each session lasted about 90 minutes, and average earnings were $36, including a $10 show-up fee.

We designed the three treatments according to the following criteria. First, we wanted a $K = 2$ treatment, as further training for the subjects. Second, we chose value matrices for which the stable vote allocation reachable via Pivot trades is unique but requires multiple trades. In AB, the path to stability is itself unique, while in both $ABC1$ and $ABC2$ the stable allocation can be reached via multiple paths, with no path being clearly focal. Third, the older literature discussed at length, and with contradictory results, the relationship between stable vote allocations reachable via vote trading and the existence of the Condorcet winner. We designed matrices for which the Condorcet winner exists, but need not correspond to the Pivot stable out-
come: it does in AB and in $ABC2$, but not in $ABC1$. The two matrices $ABC1$ and $ABC2$ are superficially very similar and have Pivot trading paths of comparable multiplicity and length, allowing us to test whether the Condorcet winner has stronger attraction. Note that we do not specify R, the selection rule when multiple trades are possible, but let the experimental subjects select which trades to conclude. For each of the experimental matrices, the unique Pivot-stable allocation is invariant to R.

The three value matrices used in the experiment are given in Table 1.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>49</td>
<td>−29</td>
<td>−29</td>
<td>12</td>
<td>−12</td>
</tr>
<tr>
<td>B</td>
<td>12</td>
<td>−12</td>
<td>−49</td>
<td>29</td>
<td>49</td>
</tr>
</tbody>
</table>

AB

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>23</td>
<td>−23</td>
<td>10</td>
<td>−10</td>
<td>23</td>
</tr>
<tr>
<td>B</td>
<td>−10</td>
<td>−10</td>
<td>23</td>
<td>−23</td>
<td>10</td>
</tr>
<tr>
<td>C</td>
<td>18</td>
<td>−18</td>
<td>−18</td>
<td>18</td>
<td>−18</td>
</tr>
</tbody>
</table>

$ABC1$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>−21</td>
<td>15</td>
<td>−9</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>B</td>
<td>15</td>
<td>9</td>
<td>15</td>
<td>−15</td>
<td>−15</td>
</tr>
<tr>
<td>C</td>
<td>−9</td>
<td>−21</td>
<td>21</td>
<td>9</td>
<td>21</td>
</tr>
</tbody>
</table>

$ABC2$

Table 1. Matrices of values used in the experiment.

To illustrate the dynamics of the Pivot algorithm, it is useful to describe the sequence of Pivot trades that would lead to Pivot stable allocations in each of our experimental treatments. In all three cases, the initial vote allocation where every voter has one vote on each issue is unstable. Consider first the matrix AB. At V_0,
proposal A fails and proposal B passes; voters 2, 4 and 5 are all on the winning side of the proposal each of them values most, and have no payoff-improving trade. But voters 1 and 3 can gain from a trade reversing the decision on both A and B: voter 1 gives a B vote to voter 3, in exchange for 3’s A vote; with no further trade, the outcome would be $P(V_1) = \{A\}$, which both 1 and 3 prefer to $P(V_0) = \{B\}$. At V_1, however, 2 and 4 have a payoff-improving trade: 2 gives a B vote to 4, in exchange for an A vote, and with no further trade the outcome reverts to $\{B\} = P(V_2)$. No further trade can now occur: all pivotal votes are held by voters 2, 4 and 5, none of whom can gain from trading. It is straightforward to verify that there are no other trading sequences that are consistent with a Pivot algorithm. The Pivot algorithm thus follows a unique path, of length two (i.e. consists of a sequence of two trades). Indicating first the ID’s of the trading partners, and then, in lower-case letters, the issue on which an extra vote is acquired by the voter listed first, the path is $\{13ab, 24ab\}$. The unique Pivot-stable outcome is $P = \{B\}$, which is also the Condorcet winner, and thus the two coincide in the case of matrix AB.

With matrix $ABC1$, the Condorcet winner exists and corresponds to $P = \{A\}$, but the unique Pivot-stable outcome is $P = \{A, B, C\}$. The Pivot algorithm can follow three alternative paths, two of them of length four (i.e. consisting of four trades), and one of length three. The three paths are: $\{13cb, 45bc, 23ab, 45ca\}$, $\{23ab, 45ca, 45bc, 13cb\}$, and $\{23ab, 45ba, 13cb\}$. In matrix $ABC2$, the Condorcet winner is $P = \{A, B, C\}$, and corresponds to the unique Pivot stable outcome. Again, the Pivot algorithm can follow three alternative paths, two of them of length four, and one of length three. They are: $\{15ab, 34ba, 24cb, 15bc\}$, $\{24cb, 15bc, 15ab, 34ba\}$,
and \{24cb, 15ac, 34ba\}.\footnote{Notice that for all three matrices, the experimental limitation that trades must be one-for-one is inessential, as the theoretically possible Pivot trading sequences involved only such trades.}

Table 2 reports the experimental design.

<table>
<thead>
<tr>
<th>Session</th>
<th>Treatments</th>
<th># Subjects</th>
<th># Groups</th>
<th># Rounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>(AB, ABC1, ABC2)</td>
<td>10</td>
<td>2</td>
<td>3, 5, 5</td>
</tr>
<tr>
<td>s2</td>
<td>(AB, ABC2, ABC1)</td>
<td>15</td>
<td>3</td>
<td>3, 5, 5</td>
</tr>
<tr>
<td>s3</td>
<td>(AB, ABC1, ABC2)</td>
<td>15</td>
<td>3</td>
<td>3, 5, 5</td>
</tr>
<tr>
<td>s4</td>
<td>(AB, ABC2, ABC1)</td>
<td>15</td>
<td>3</td>
<td>3, 5, 5</td>
</tr>
<tr>
<td>s5</td>
<td>(AB, ABC2)</td>
<td>15</td>
<td>3</td>
<td>3, 5</td>
</tr>
<tr>
<td>s6</td>
<td>(AB, ABC1)</td>
<td>15</td>
<td>3</td>
<td>3, 5</td>
</tr>
</tbody>
</table>

Table 2. Experimental Design.\footnote{A programming error in sessions s5 and s6 made the last five rounds of data unusable.}

4 Experimental Results.

4.1 Trading and Bidding Volume

How much trading did we see? Table 3 reports basic statistics on observed trades. "Pivot" refers to the predicted number of trades under the Pivot algorithm. The unit of analysis is the group per round.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Tot trades</th>
<th>groups (\times) rounds</th>
<th>Mean trades</th>
<th>Median</th>
<th>s.d</th>
<th>Max</th>
<th>Pivot</th>
</tr>
</thead>
<tbody>
<tr>
<td>(AB)</td>
<td>115</td>
<td>51</td>
<td>2.25</td>
<td>2</td>
<td>1.92</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>(ABC1)</td>
<td>211</td>
<td>70</td>
<td>3.0</td>
<td>3</td>
<td>1.67</td>
<td>9</td>
<td>3,3,4</td>
</tr>
<tr>
<td>(ABC2)</td>
<td>175</td>
<td>70</td>
<td>2.5</td>
<td>2</td>
<td>1.36</td>
<td>7</td>
<td>3,3,4</td>
</tr>
</tbody>
</table>
Table 3. Number of trades.

A histogram of the number of trades per treatment (per group per round) (Figure 1) shows the higher frequency of shorter trade paths in the \(AB \) treatment, with \(K = 2 \). Between the two \(K = 3 \) treatments, \(ABC2 \) has higher fractions of shorter trades, but the differences are not striking—56 percent of rounds end with two or fewer trades in \(ABC2 \), as opposed to 41 percent in \(ABC1 \), and 80 percent end with three or fewer trades in \(ABC2 \), as opposed to 76 percent in \(ABC1 \). In all treatments, few rounds include five or more trades.

Figure 1. Number of trades. Frequencies.

As expected, the bidder’s option of rejecting trades, and thus discriminating over who accepted the original bid, was important. In columns 2-4 of Table 4, we report the total number of bids, how many of these bids found a taker in the market, and
how many of these acceptances were then rejected by the bidder. A large fraction of all posted bids found a counterpart—from a minimum of 77 percent in $ABC2$ to more than 95 percent in AB—but about a third of these accepted trades were rejected by the bidder—32 percent in A, 29 percent in $ABC1$, and 34 percent in $ABC2$. As the last column of the table shows, some rejected trades were associated with a strict increase in myopic payoff for the bidder, but the number is small—between 10 and 20 percent of rejections in all treatments.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Tot bids</th>
<th>Accepted</th>
<th>Rejected by bidder</th>
<th>Rejected with payoff gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>177</td>
<td>169</td>
<td>54</td>
<td>6</td>
</tr>
<tr>
<td>$ABC1$</td>
<td>368</td>
<td>296</td>
<td>85</td>
<td>15</td>
</tr>
<tr>
<td>$ABC2$</td>
<td>345</td>
<td>267</td>
<td>92</td>
<td>11</td>
</tr>
</tbody>
</table>

Table 4. Bids, accepted bids, and rejected trades.\(^{21}\)

Whether in terms of number of trades or of any other variable studied below, the data show no evidence of learning or of order effects—behavior appears very consistent across rounds, and regardless of whether $ABC1$ or $ABC2$ was played first. Thus we present the experimental results aggregating over rounds and order.

4.2 Stability of final vote allocations

Our point of departure is the definition of stable vote allocations. Is the stability requirement satisfied in the vote allocation to which our subjects converge at the end of each round? Figure 2 shows the CDF of steps to stability for the three treatments,

\(^{21}\)Tot bids excludes canceled bids.
in black, as well as in 5,000 simulations with random trading, in red. The horizontal axis measures the minimal number of Pivot trades necessary to reach stability, and the vertical axis the proportion of final vote allocations not further from stability than the corresponding number of trades.

Figure 2. Steps to stability. Cumulative distribution functions.

The fraction of stable vote allocations in the experimental data was 76 percent in \(AB \), and 64 percent in both treatments \(ABC1 \) and \(ABC2 \). In all treatments, more than 80 percent of all vote allocations were within one step (one trade) of stability, although the figure also shows the predictably easier convergence to stability in the \(AB \) treatment, with only two proposals. In all three treatments, the distribution corresponding to random trading first order stochastically dominates the distribution for the experimental data.

The simulation of random trades provides the yardstick of comparison for our data. We will use it repeatedly in what follows, and it is worth describing the methodology in some detail. In each treatment, we constructed the random trades by randomly selecting an individual, one or two issues (in the two- and three-issue
treatments, respectively), a partner, and a direction of trade, all with equal probability, and enacting the trade as long as both traders’ budget constraints were satisfied. If budget constraints are violated, we cancel the proposed trade and restart. In each group, a trade occurs with specified probability over a short time interval, with both parameters calculated to match the observed average length of rounds and the average number of trades in the treatment. For each treatment, we repeated the procedure 5,000 times, each time focusing on a group.

Random trading is a demanding comparison when applied to the stability of vote allocations because a large fraction of feasible trades take the vote allocation away from minimal majority, and hence make Pivot trades impossible, and the allocation stable. But Figure 2 is informative beyond the comparison to random trading, and that is because our soft timing constraint de facto allows subjects to choose when to stop trading. A high fraction of stable allocations at the end of the rounds is indicative of either a search for or at least of a recognition of stability, of opportunities for payoff gains having been exploited.

Figure 2 reports information on the stability of the vote allocations reached at the end of trading. But our data also give us information on dynamic convergence. Do successive trades move the vote allocation towards stability?

Figure 3 shows, for each treatment, the dynamic path of the vote allocation, as captured by the succession of trades. The horizontal axis measures time, in seconds.

22 Given the average length of a round in the treatment, time is divided into a grid of 100 cells, and in each cell a group can trade with probability p, such that $100p$ equals the mean number of trades per round in the treatment.

23 For example, in treatment AB, where breaking minimal majority on a single issue is sufficient to induce stability, a single random vote trade from any unstable allocation has never less than a 30 percent chance of inducing stability.
A marker corresponds to a trade. Thus, for any given marker, the horizontal axis indicates when the trade took place, within the maximal round length observed in the data for each treatment. The vertical axis measures distance from stability, defined, as in Figure 2, by the minimal number of Pivot trades necessary to reach a stable allocation. Such number is calculated first for the vote allocation characterizing each group in the treatment at that moment in that round, and then averaging over the groups. The figure is drawn pooling over all groups and all sessions, for given treatment, and each curve, with its own shade and marker symbol, reports data from the same round (1-3 for AB and 1-5 for ABC_1 and ABC_2). The jumps between dots are relatively small because a trade concerns a single group, while the others’ vote allocations remain unchanged.
Figure 3. *Dynamic convergence to Pivot stable outcomes. Data vs. Random.*

All curves decline, almost perfectly monotonically, showing the dynamic convergence towards stability. To help us evaluate such convergence, the black curve in each panel reports the steps from stability calculated from the 5,000 simulations with random trading. After the first minute, in all three treatments, the curve corresponding to random trades remains higher than the curve corresponding to any round of experimental data.\(^{24}\) Notice also the lack of learning in the data—there is no systematic difference between earlier and later rounds.\(^{25}\)

4.3 Vote Allocations

For all three value matrices used in our experiment, the Pivot algorithms predict a unique stable vote allocation. Is such an allocation reached by the experimental

\(^{24}\)With the exception of two trades in round 5 in *ABC2*.

\(^{25}\)To verify that results were not driven by averaging, we computed CDF’s of steps to stability for the data and for the random simulations, as in Figure 2, at all 30-second intervals. In all treatments and at all times, the CDF corresponding to random trading FOSD’s the CDF from the data.
subjects? Figure 4 reports the number of votes held by each voter at the end of a round, averaged over all rounds of the same treatment. Each panel corresponds to a treatment and reports the number of votes by voter ID, i.e. by the vector of values corresponding to each column of the value matrix. The blue columns represent the experimental data, the grey columns the Pivot prediction, and the red line the no-trade status quo (or equivalently, the average vote holding after random trading). The figure reports data from all rounds, but remains effectively identical if we select stable vote allocations only.

The vote distribution in the data is less sharply variable across issues than theory predicts, as we would expect in the presence of noise. Yet, the qualitative predictions are strongly supported. There are five voters in each treatment, holding votes over two (in AB) or three issues (in $ABC1$ and $ABC2$)–a total of forty points. Of these forty, the theory predicts that 14 should be above 1–the voter should be a net buyer over that issue– and 15 below 1–the voter should be a net seller. The prediction is satisfied in every single case, across all treatments. When the theory predicts holding a single vote–11 cases for which the voter should exit trade with the same number of votes held at the start–, the data show three cases where the average vote holding is below 1, five where it is above, and three where it is effectively indistinguishable from 1. On average, our subjects hold 0.56 votes when the theory predicts 0; 1.05 when the theory predicts 1, and 1.43 when the theory predicts 2.07.26

26The theory predicts that voter 3 in treatment $ABC1$ should hold three votes.
Figure 4. Average vote allocations at the end of each round, by voter type.
4.4 Trades

According to our results so far, final vote allocations tend to be stable; dynamic trading moves towards stability, and final individual vote holdings mirror qualitatively the properties of Pivot-stable allocations. But can we say more about the specific trades we see in the lab? In particular, are these trades compatible with the Pivot algorithm?

4.4.1 Pivot trades.

The class of pairwise Pivot algorithms is a class of mechanical selection rules among feasible pairwise trades. Accordingly, we test it on binary trades—i.e. by considering the fraction of all trades associated with myopic strict increases in payoff for both traders.\(^{27}\) We plot such a fraction in Figure 5. The black columns correspond to the experimental data, the grey columns to the simulations with random trading, and the error bars indicate 95 percent confidence intervals (under the null of random trading).\(^{28}\)

\(^{27}\) Alternatively, we could consider the fraction of trades that induce strict (myopic) gains for the individual making the trade (as opposed to the pair), a substantially weaker test of our model. But Pivot algorithms are not equivalent to optimizing rules of individual behavior—the latter would presumably include a search for maximal gain, competition for specific traders, endogenous surplus division, etc..

\(^{28}\) Note that under the null all observations are independent. Thus no correction for correlation is required.
The figure shows clearly the subjects’ search for gains. With random trading, the frequency of payoff gains for both traders is 3 percent in AB and 1 percent in $ABC1$ and $ABC2$, or less than one fifth of what we observe in AB, and less than one tenth in $ABC1$ and $ABC2$. In all cases, the probability that the data are generated by random trades is negligible.

But if the trading behavior of the experimental subjects is not random, it is also true that the fraction of trades consistent with the Pivot algorithm is small: 17 percent in AB, 26 percent in $ABC1$ and 18 percent in $ABC2$.\footnote{The fractions of individual trades associated with strict gains are respectively 41, 32, and 39 percent in the three treatments.} Which other trades are observed?
4.4.2 Other trades.

We find that a much larger share of the data can be explained by extending the Pivot algorithms in one of two directions. First, while the Pivot algorithms select trades with strict gains in payoffs, in every treatment more than 40 percent of all trades result in no change in payoff for either trader. Zero-gain trades are trades involving non-pivotal votes, and thus preserving the status quo outcome. They need not be irrational: they could be the result of buying votes from allies with weak preferences, for example, or of buying losing votes, to strengthen one’s favorite side’s margin of victory. Pivot algorithms can be extended to weakly-improving trades.30 The fraction of observed trades consistent with the model would then increase to 70 percent in AB and $ABC1$ and 58 percent in $ABC2$.31 But our goal here is not to find support for the model, but to understand whether the zero-gain trades were intentional, and if so why.

Second, every Pivot trade requires increasing the number of votes held on high-value proposals while reducing the number of votes held on low-value proposals. However, not all such trades are Pivot trades: a trade that induces strict payoff gains must also change the resolution of the proposals concerned. Recall our previous definition of a voter’s score (at time t) as the product of the subject’s number of votes

30Pivot trades are a subset of weak Pivot trades, and thus a Pivot stable allocation of votes is also reachable via weak Pivot trades. It follows that convergence to stability extends to weak Pivot trades under some constraint on the rules R through which trades are prioritized. For example, a rule R that executes first trades with strict payoff gains will reproduce the Pivot stable allocations reachable via strict Pivot algorithms; a rule R that allows infinite back-and-forth trades between two voters with identical preferences will not lead to convergence.

31And if the model is evaluated in terms of the fraction of weakly-improving individual trades, then the support from the data is very high: 84 percent in AB, 85 percent in $ABC1$, and 79 percent in $ABC2$.

32
and absolute valuation, summed over all proposals:

\[S_{it}(V_{it}) = \sum_{k=1}^{K} z_{i}^{k}|v_{it}^{k} \]

As noted earlier, the score is a shadow value of the total votes held by a voter, reflecting the voter’s intensity of preferences and the number of votes held, and remains unchanged whether the voter wins or loses any proposal. We call score-improving trades all trades that increase a subject’s score. Trades may be score-improving but not payoff-improving (and hence Pivot trades) either because the proposals on which votes are traded continue to be lost or because they were already won. Such trades could reflect difficulties understanding pivotality, but could also mirror behavior that is more forward-looking than Pivot algorithms. Myopic gains are evaluated assuming voting occurred immediately. In fact, in the uncertain and complex environment of our experiment, subjects may want to accumulate votes on high value proposals, regardless of their resolution under immediate voting, because they conjecture that further trades are likely to take place before voting actually occurs.

Figure 6 shows, for each treatment, the fraction of trades consistent with Pivot trades (dark blue), weak payoff increases for both traders (light blue), and score increases, again for both traders (yellow).\(^{32}\)

\(^{32}\)If evaluated in terms of individual trades, the fractions of score increases are 75 percent for \(AB\), 72 percent for \(ABC1\), and 75 percent for \(ABC2\). All score increases are strict, because the experimental matrices do not allow for weak score increases.
By construction, Pivot trades are a subset of both of the other two categories, and thus must explain a smaller fraction of observed trades. What is surprising is how much smaller. The figure shows that Pivot trades are of the order of one third of all weakly-payoff-improving trades in treatments A and $ABC2$, and about two fifths in treatment $ABC1$. Similar numbers apply to score-improving trades.

The frequency of different types of trades is informative, but what we need to understand is the intentionality of such trades. As we remarked about Figure 5, Pivot trades are not very frequent, but they appear intentional: they cannot be explained by random trading. Is that true of other types of trades?

Figure 7 plots, for the representative case of the AB treatment, the observed fractions of Pivot trades, zero-payoff change trades, and score-increasing-not-Pivot trades, together with the corresponding fractions under random trading, and the 95 percent confidence interval under the null hypothesis of random trading.
The figure makes clear that although the fraction of zero-payoff changing trades is large, we cannot rule out that it is the result of noisy trading: because all non-pivotal trades have zero effect on payoffs, for any given vote distribution a large share of feasible trades belongs to this class and thus is chosen under random trading. The figure does show, however, that this is not true for non-Pivot-score-increasing trades: the fraction observed in the data is significantly higher than under random trading ($p < 0.0001$).

It is useful to explore these observations in more detail through a simple statistical model.

4.4.3 A simple statistical model

The model we present in this subsection is purely statistical, i.e. it aims not at explaining behavior but at classifying the types of trades, lending some rigor to the comments suggested by the figures. In line with the data just reported, we
suppose that executed trades are selected according to four myopic criteria, synthetic summaries of the rules followed by the pairs of traders: (1) Pivot trades; (2) zero-payoff changing trades; (3) score-improving trades; (4) some other criterion we ignore, and such that the trade appears to us fully random. When executing a trade, each pair of traders follows one of these rules. Each trade can then be written in terms of the probability of following the four criteria: \(\text{probP} \) for Pivot trading; \(\text{prob0} \) for zero-payoff changing trades, \(\text{probS} \) for score improving trades, and \(\text{probR} \) for random trades. Call \(T_t \) the set of all trades feasible at \(t \), where a trade is defined by a pair of traders, a pair of proposals, and the direction of trade. Similarly, call \(T_t^P \) the set of all feasible Pivot trades, \(T_t^0 \) the set of all feasible zero-payoff trades, and \(T_t^S \) the set of all feasible score-improving trades. Suppose that we observe a Pivot trade. The probability of such a trade equals \(\text{probP}/|T_t^P| + \text{probS}/|T_t^S| + \text{probR}/|T_t| \). Similarly, the probability of a score-improving but not Pivot trade is given by \(\text{probS}/|T_t^S| + \text{probR}/|T_t| \). Assuming that different trades are independent, the likelihood of observing the data set is simply the product of the probabilities of each trade. The probabilities \(\text{probP}, \text{prob0}, \text{probS}, \) and \(\text{probR} \) can then be estimated through maximum likelihood. The only challenge is that the sets of feasible trades, \(T_t, T_t^P, T_t^0, \) and \(T_t^S, \) all evolve over time, as budget constraints become binding and the changes in vote allocations alter the payoff effects of different vote exchanges.\(^{33}\)

We report our estimates in Table 5, together with the 95 percent confidence

\(^{33}\)The unit of analysis is the trade itself, evaluated with respect to the set of feasible trades at \(t \). It is the constantly changing set of feasible trades that determines the classification of the trade. Although the data were collected over multiple rounds, the changing set \(T_t \), outside the control of any individual trader, makes the assumption of independence less problematic than in a standard set-up with individual decision-making and a small set of possible states. It greatly simplifies an estimation procedure that is computationally quite demanding.
The results of the estimation indicates that trade is quite noisy and, as Figure 7 led us to expect, there is essentially no evidence of intentional zero-profit trades in any of the three treatments (in all treatments the 95 percent confidence interval for \(prob0 \) includes 0). There is however a significant probability of Pivot trades in treatments \(ABC1 \) and \(ABC2 \), and of score-improving trades in all three treatments. Again as implied by the figures, \(probP \) and \(probS \) are not fully collinear and can be estimated separately.

4.4.4 Score-improving trades

Observing that a rising score can explain a substantial fraction of the experimental trades does not imply that the increase in score is the final objective pursued by our subjects. A first reason to be skeptical is the frequency of rejected trades reported in Section 4.1. Recall that about a third of all accepted bids are rejected by the bidder. Contrary to payoff changes, score increases do not depend on the identity

34 We constructed the confidence intervals by bootstrapping the data and estimating the model’s parameters 1000 times.
of the trading partner: if score increases were the goal of the trades, they could be secured by the bidder and there would be no reason to reject any partner. In all treatments more than two thirds of the trades rejected by the bidder would have caused the bidder an increase in score.

A second cause for doubt comes from investigating whether subjects have indeed exploited all opportunities for score increases when trade comes to an end. We have defined stability as the absence of any feasible strictly payoff-improving trade. We can construct the similar concept of score stability, defined as the absence of any feasible score-improving trade, and enquire whether score stability is a useful characterization of final vote allocations.\(^{35}\) Figure 8 plots the CDF’s of minimal steps from score stability in the three treatments (in yellow), together with the CDF of minimal steps to payoff stability (in blue).

\(\text{Figure 8. Score and payoff stability. Cumulative distribution functions.}\)

Score stability is a much weaker explanation of final vote allocations than payoff stability: the fraction of score-stable final vote allocations is 34 percent in \(AB\), 14

\(^{35}\) A score-stable allocation always exists in pairwise trading. Indeed it is this property that leads to the convergence of the Pivot algorithms to payoff-stable vote allocations.
percent in ABC_1, and 6 percent in ABC_2; the corresponding numbers for payoff-stability are 76 percent, 64 percent, and again 64 percent. Not only does the orange CDF FOSD’s the blue CDF (in AB and ABC_1), but the gaps are large.

The takeaway from these numbers is that subjects appear to recognize payoff-stable vote allocations and tend to stop trading at that point, but they stop trading long before achieving maximal score improvements. Our conclusion is that subjects do not pursue score improvements for their own sake. Thus we conjecture that non-Pivot score-improving trades are unlikely to reflect primarily confusion about pivotality or payoffs, and more likely to result from some cautionary behavior in front of uncertainty about future trades.

4.4.5 Are Subjects Farsighted?

Can the conjecture of forward-looking behavior be made more rigorous? The characteristics of votes trading for votes—a dynamic barter model in which others’ trades affect both the feasibility and the desirability of one’s own trades—make a fully strategic analysis a daunting prospect.\(^{36}\) It is possible however to make some small progress by borrowing from cooperative games. Again, because of the externalities involved and because the opportunities for trade depend on the current vote allocation, vote trading cannot be represented under any of the existing cooperative models of farsightedness.\(^{37}\) We can however adopt to our problem, and test on our data, some

\(^{36}\)The difficulty is shared by other games with similar structure, for example matching and network formation games. And indeed such games are typically analyzed under myopia or other strongly restrictive conditions.

basic concepts from this literature.

To model this formally, we need three definitions:

Definition 4 Given two vote allocations V and V', a pair of voters $D = \{i, j\}$ is said to be effective for (V, V') if $V' \in V$ (V' is feasible) and $V'_s = V_s$ for all $s \neq i, j$.

That is, voters i and j can move the vote allocation from V to V' by reallocating votes among themselves only.

Definition 5 A pairwise chain from V to V' is a collection of vote allocations $V^1, V^2, ..V^m$, with $V^1 = V$ and $V^m = V'$, and a corresponding collection of effective pairs $D^2, .., D^m$ such that for all $t = 1, ..m - 1$, D^{t+1} is effective for (V^t, V^{t+1}).

Finally:

Definition 6 *(Harsanyi, 1974)* A a collection of vote allocations $V^1, V^2, ..V^m$, with $V^1 = V$ and $V^m = V'$ is a pairwise farsighted chain if it is a pairwise chain, and, in addition, $u_j(V^t) < u_j(V')$ for all $j \in D^{t+1}$. If there exists a pairwise farsighted chain from V to V', then V' is said to pairwise farsightedly dominate (PF-dominate) V.

Using these basic concepts, there are several possible ways to define farsightedly stable vote allocations. The most intuitive is the pairwise parallel of the farsighted core: it states that an allocation V is pairwise farsightedly stable if there exists no V' that PF-dominates V.\(^{38}\) Other definitions are possible, and in general problems

\(^{38}\)Note the difference between this definition and the definition we used earlier. Myopic stability holds if there is no alternative vote allocation that a pair of voters can move to such that the pair would gain if voting occurred without further trades. Farsighted stability is much more demanding: V' can PF-dominate V even if trades generate temporary myopic losses, as long as the final allocation V' is preferred to the allocation at which each voter trades. What matters is the utility comparison between the end point of the chain and the vote allocation at which trading occurs.
of existence are not trivial. Developing a full analysis goes well beyond the scope of this paper, but our goal is much more limited: farsightedness builds on Harsanyi’s notion of indirect dominance, defined above. If subjects in our experiment were farsighted, then their trades should be such that the final vote allocation reached at the end of the round should be associated with a payoff gain for each trader, relative to the vote allocation at which the subject traded. Was this the case?

Table 6 reports, for each treatment, the fraction of trades associated with farsighted gains for both traders (F-gains, in column 2), with farsighted losses (F-losses, in column 3), and, for comparison, the fraction of Pivot trades (that is, trades associated with myopic gains, in column 4).

<table>
<thead>
<tr>
<th></th>
<th>F-gains</th>
<th>F-losses</th>
<th>Pivot</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>5.2</td>
<td>2.6</td>
<td>17.4</td>
</tr>
<tr>
<td>ABC1</td>
<td>3.8</td>
<td>11.8</td>
<td>25.6</td>
</tr>
<tr>
<td>ABC2</td>
<td>6.3</td>
<td>14.3</td>
<td>18.3</td>
</tr>
</tbody>
</table>

Table 6. Percentage of trades yielding farsighted gains and losses, and share of Pivot trades.

In all treatments, the fraction of trades with farsighted gains is less than 10 percent, and about a third of the fraction of Pivot trades; in the two three-proposal treatment, it is less than half of the fraction of farsighted losses. On the basis of

39 A vote allocation that gives dictatorship power to a single voter is in the farsighted core and thus is pairwise farsighted stable, according to this definition. Other plausible definitions, however, do not guarantee existence in our setting. In addition, none addresses the more interesting question of whether stability can be reached from the starting vote allocation. For questions of existence, in environments that differ from ours, see the discussions in the references cited above.

41
the these numbers alone, it is hard to put much weight on farsighted domination as engine of trade.\footnote{Note that the test here is weak: farsighted dominance relations are based on farsighted chains, the logic of which requires that \textit{all} trades on a chain produce farsighted payoff gains to the trading pair.}

The evidence of score-improving trades suggests that subjects gave some thought to the possible path of future trades, but standard notions of farsightedness adapted from recent approaches in cooperative game theory do not help explain the experimental data.

4.5 Outcomes

Which outcomes did the experimental subjects reach? Figure 9 plots the frequency of different outcomes observed over the full data, or restricting attention to stable outcomes only.
Outcomes are ordered from lowest to highest aggregate payoff (thus the order is different in ABC1 and ABC2). A star indicates the Condorcet winner, and a dot the Pivot stable outcome. The Condorcet winner always corresponds to the no-trade outcome. 41

The figure shows two immediate regularities. First, in all treatments, the Condorcet winner is the most frequent outcome, whether we consider all outcomes, or stable outcomes only. Second, in all treatments, the frequency of outcomes correlates positively and significantly with aggregate payoffs. However, because both the Condorcet winner and aggregate payoffs also correlate perfectly with persistence of

41 This is a well-known result when the initial allocation of votes grants to each voter one vote per proposal, as in our experiment. See Park (1967) and Kadane (1972).
pre-trade outcomes, both results may reflect the inertia built into the market by the frequent zero-gain trades.

In terms of Pivot predictions, we see a higher frequency of the Condorcet winner, relative to the second most frequent outcome, in treatments AB and $ABC2$, where the Condorcet winner is Pivot-stable. And among stable outcomes we see a small spike in the frequency of outcome $\{A, B, C\}$ in treatment $ABC1$ where it is Pivot-stable, relatively to the outcome’s low payoff-rank. On the whole, however, the clean predictions on outcomes derived from the Pivot algorithm are not evident in the data. Since final vote allocations, on the contrary, are in line with theory, the divergence of outcomes from predictions is surprising: outcomes are the automatic result of vote allocations. The divergence highlights the high sensitivity of outcomes to noise—contrary to good markets, one subject’s missed trading opportunity (and thus a small deviation of final vote allocations from the theory) affects the final result of voting for all.

As shown by Figure 10, the outcomes we observe are consistent with the trades’ characteristics highlighted by the statistical model. The figure reports the frequency of different outcomes in the data (considering here all final vote allocations, whether stable or unstable) and, in columns denoted by diagonal stripes, in 5,000 trading simulations in which, given the vote allocation, a trade is selected randomly, following the estimated probabilities in Table 5. As in all simulations in the paper, at each time interval the probability of a trade occurring is calculated so as to replicate, on average, the observed number of trades in the treatment. The model simulations match

\footnote{In our matrices, the fewer the changes in the resolution of the different issues, the higher the aggregate payoff.}
the ordinal ranks of the different outcomes’ frequencies, although they consistently overestimate the frequency of the Condorcet winner. Such overestimation, however, is mostly mechanical: the result of the relatively high probability of random trades, and the likelihood that such random trades leave outcomes unchanged. Because zero-gain trades result in non-minimal majority vote allocations, they make Pivot-trades impossible, and thus bias the simulations towards pre-trade outcomes and the Condorcet winner.

Figure 10: Simulated outcomes v/s data.
5 Conclusions

This paper presents the results of a laboratory experiment designed to explore the theoretical implications of a dynamic model of vote trading. The theoretical approach has two essential features: (1) a notion of stability; and (2) a rational vote trading process. Stable vote allocations are those for which there are no strictly payoff-improving vote trades for any pair of voters. The trading process defines the possible sequences of payoff-improving trades that converge to a stable vote allocation.

The experiment delivers four main findings. First, the stability concept is useful in organizing the experimental data. Overall, two-thirds of all final vote allocations in the experiment are stable, and more than eighty percent are at most one trade away from stability. Second, final vote allocations are in line with the theory: across all treatments, each subject’s vote allocation at the end of the round, averaged over rounds, always changes in the direction predicted by the theory: increasing, relative to the initial allocation, when the theory predicts that the subject will be a net buyer of votes, and decreasing when the theory predicts net selling.

However, and this is our third finding, the final proposal outcomes show a clear bias towards the pre-trade outcome. In vote trading environments, there is great scope for path dependence, and a single deviation from predicted trading behavior can have large impacts on proposal outcomes, because subsequent trades are easily triggered (or inhibited) by the current trade. In particular, trades that increase the size of the winning majority make pivotal trades impossible and consolidate the pre-trade outcome.

The analysis of trade-by-trade data sheds light on the source the such devia-
tions. We classify trades though a simple statistical model and conclude—our forth finding—that when noise is accounted for most trades are score-improving, but not necessarily payoff-improving—the trades that are posited by the theoretical trading process. Score-improving trades are vote exchanges in which each voter trades a vote on a less important issue in exchange for a vote on a more important issue, but does not necessarily benefit from the trade (either because the outcome does not change, or because the directions of preferences are such that one voter suffers a loss). Because such trades coexist with the subjects’ ability to recognize stable vote allocations—i.e. to stop trading in the absence of further opportunities for payoff increases, we conjecture that they may be precautionary more than irrational, suggesting the possibility of some farsighted behavior. This said, rational farsighted trading behavior is unambiguously rejected by our data: on average, a trade is twice as likely to leave the traders worse off in the final outcome as it is to make them better off.

This study only scratches the surface of possibilities for laboratory analyses of vote trading and logrolling. There are many interesting environments that are not represented by the three studied in the paper. First, a Condorcet winner exists for all three environments in this study, but we know that more generally Condorcet winners may not exist. It would be interesting to explore such preference configurations and study whether the inertia towards pre-trade outcomes we observe in our data remains true in the absence of a Condorcet winner. Second, the experiment studies pairwise trading, but it would also be interesting to explore more complex coalitional trades. The pairwise vote trading model extends quite naturally to coalitional vote trading,
although designing a user friendly trading interface would be a major challenge. Related to this point, there are alternative ways to organize the market. For example, one could allow communication to take place either concurrently with or prior to the actual trading protocol. This might make it easier for voters to identify beneficial trading partners. In the current trading scheme, voters who offer a trade might have to reject a trading partner, which leads to delays and leaves room for accidental trades. Other extensions of the trading process would include allowing package trades or allowing voters to target their offers to specific other members.

The experimental findings are also suggestive of useful extensions of the theoretical framework. The evidence we find for vote hoarding, whereby voters acquire extra non-pivotal votes on high-salience issues, is indicative of precautionary incentives to trade for votes, so as to guarantee passage or failure of those issues. Understanding such precautionary motives requires allowing for risk aversion and modeling the strategic uncertainty faced by vote traders - uncertainty about trades that future voters might engage in. As presently formulated, the model of vote trading operates only on the ordinal preferences of voters over the profile of final outcomes. With uncertainty, preferences would be defined on the space of lotteries over outcomes and would require a somewhat different theoretical approach.
Appendix

VOTE TRADING INSTRUCTIONS

Make yourself comfortable, and then please turn off phones and don’t talk or use the computer. Thank you for agreeing to participate in this decision making experiment. You will be paid for your participation in cash, at the end of the experiment. Different participants may earn different amounts. What you earn depends partly on your decisions and partly on the decisions of others. If you have any questions during the instructions, raise your hand and your question will be answered. If you have any questions after the experiment has begun, raise your hand and an experimenter will come and assist you.

The experiment today is a committee voting experiment, where you will have an opportunity to trade votes before voting on an outcome. The experiment will be in three parts. At the end of the experiment you will be paid the sum of what you have earned in all three parts of the experiment, plus your promised show-up fee of 10 dollars. Everyone will be paid in private and you are under no obligation to tell others how much you earned. Your earnings during the experiment are denominated in POINTS. For this experiment every 100 POINTS earns you 6 DOLLARS.

Here are the instructions for Part 1.

You will be randomly assigned to one of 3 committees, each composed of 5 members. Each committee is completely independent of the others, and the decision taken in one committee has no effect on the others. The committee will vote using majority rule to decide on 2 different motions, denoted A and B. Each motion can either pass or fail depending on how the committee votes. There will be a separate vote on each motion. The computer will assign you a committee member number (1, 2, 3, 4, or 5). Part 1 consists of 3 rounds.

You will be told, for each motion, whether you prefer it to pass or to fail. The computer will assign you (and each other member) a value for each motion which will be a number between 1 and 100. You will earn your value for a motion if you prefer that motion to pass and it passes, or if you prefer it to fail and it fails. This is your only source of earnings. Your earnings for the round are equal to the sum of your earnings over the two motions.

Each committee member starts a round with 1 vote to cast on each motion. Then there will be a 2 minute trading period, during which you and the other members of your committee will have an opportunity to trade votes with each other. For
example, you may wish to trade your A vote in exchange for some other member’s B vote. We will describe exactly how to do this shortly.

After the trading period ends, you will proceed to the voting stage. Once everyone has voted, you will be told what the final votes were in your committee and how much you earned in that round. This will complete the first round. The remaining 2 rounds in Part 1 follow the same rules. Each committee member starts the round with a single vote on each motion. Your committee member number, preferences for each motion (pass or fail), your value for each motion, and the preferences and values of the other four members of your committee all stay the same for all 3 rounds of part 1 of the experiment.

Your earnings for part 1 are the sum of your earnings in all 3 rounds. After round 3 ends, I will read you instructions for part 2 of the experiment.

We now describe in detail how you and the other members of your committee can trade votes. When we begin a round, you will see a screen like this, although the exact numbers may be different. [Display Screen 1] On the right of the screen is an Information Table that contains a lot of information, so please listen carefully. It displays each member’s preference for each motion (pass or fail), value, and number of votes. If the member prefers the motion to fail, then the value is written in a blue color. If the member prefers the motion to pass, then the value is written in an orange color. You can simply think of there being two sides - the orange side and the blue side - on each motion. The number of votes held by each member on each motion is in parentheses. Because no trading has occurred yet, each member holds exactly one vote on each motion.

Your own row is specifically labeled and the label is highlighted in gray. The last row in the table is labeled "outcome". This row tells you, for each motion, what the total vote would be if voting took place now, by showing the column sum of votes on each motion. The number of votes for is given first, in orange, and the number of votes against is given second, in blue. If the votes in favor of a motion exceed the votes against, then all voters who prefer the motion to pass will earn their value for that motion, and all voters who prefer the motion to fail will earn zero for that motion. Similarly, if the votes in favor of a motion failing exceed the votes in favor of it passing, then all voters who prefer the motion to fail will earn their value for that motion, and all voters who prefer the motion to pass will earn zero for that motion. There is a check mark next to your value if the outcome of that motion is the outcome you prefer. This means that you earn your value for that motion. In this example, if there were no votes traded at all, then on motion A, there are 2 votes held by members who prefer A to pass and 3 held by members who prefer A to fail, so motion A fails. On motion B, there are 3 votes held by members who prefer B to
pass and 2 held by members who prefer B to fail, so motion B passes. Since ID 1 (You) prefers both motions to pass, he earns his value for motion B but earns 0 for motion A.

To the left of the table, in grey, is the trading window. At any time during the trading period, any committee member may post a trade offer by requesting 1 vote on one motion in exchange for 1 vote on some other motion. Suppose the participant on the slide in front of the room wanted to post a trade requesting one A vote in exchange for one B vote. This is done by entering a 1 in the A box under "Requests" and a 1 in the B box under "Offers". [Screen 2]. You can only trade 1 vote for 1 vote; you cannot request or offer multiple votes.

After you have entered this trade request and clicked the "submit trade offer" button, the trade is posted in the trading panel for everyone in your committee to see. [SCREEN 3] If another committee member wants to accept your trade request, they may click on it to highlight it, and then click on the "accept selected offer" button. [SCREEN 4] You now have 10 seconds to either confirm or reject the accepted trade. A message will pop-up on your screen. [SCREEN 5]. The message tells you what the outcome of the vote would be if you either accept or reject the trade and voting took place without any further trade. If you reject the trade or do nothing for 10 seconds, the trade does not occur. The committee member who had accepted your offer is informed that you declined to confirm the trade. [SCREEN 6]. Your offer is re-posted in the trading window, and another voter can accept it. If you confirm the trade, then the voter who accepted the offer now holds 0 A votes and 2 B votes, you now hold 2 A votes and 0 B votes, and the Information Table is updated accordingly. The new Information Table is displayed for 10 seconds on a popup screen for everyone in your group to see. [SCREEN 7]

If you have a standing offer listed in the trading window, you may cancel it by first clicking on it and then clicking the "cancel selected offer" button. [SCREEN 8]

The trading period continues for 2 minutes. The timer at the top tells you how much time remains in the trading period. The clock is frozen when the Information Table is shown after a trade, with the new vote holdings. If a trade occurs within 10 seconds of the end of the trading period, the trading period is automatically lengthened by 10 more seconds.

You are free to post trade requests at any time, but you are not allowed to offer to trade away a vote on a motion if you currently hold 0 votes for that motion or already have an offer posted on the trading window that would result in holding 0 votes if accepted. In that case you would first have to cancel your existing posted offer. Also remember that you can only trade one vote for one motion in exchange for one vote for another motion. If you try to do a trade that is not allowed, you
will either receive an error message, or the action buttons will become gray and be
deactivated, preventing you from proceeding with that trade.

When the trading period for the round is over, we proceed to the voting stage.
Your screen will now look something like this: [SCREEN 9]. In this stage you do not
really have any choice. You are simply asked to click a button to cast all the votes
you hold at the end of trading. The computer will automatically cast your votes
on each motion according to the preferences you were assigned. For example, if you
prefer motion B to fail and you hold two B votes after the trading period, those two
votes will be cast automatically against motion B. Please cast all your votes without
delay by clicking on the vote button.

After you and the other members of the committee have voted, the results are
displayed and summarized. [SCREEN 10]

As the experiment proceeds, at the bottom of each screen you will see a history
table, summarizing the results of the previous rounds [SCREEN 11. Go over the
different columns] If you switch to tab view, each round will be shown separately].

We then proceed to the next round, where you again start out with one vote on
each motion and the rules are the same as in the first round. Remember that your
assigned committee number, preferences for motions, values for motions, and those
of the other members of your committee all stay the same for all 3 rounds of part 1
of the experiment. After the first 3 rounds are completed, we will read instructions
for the second part of the experiment.

To give you some experience with the trading screen, we will conduct two practice
rounds. The rules will be the same as they will be in the paid rounds, but the values
and preference assignments, for or against a motion, are not the same as they will
be in the paid rounds. You are not paid for the practice rounds, so they have no
effect on your final earnings. The only purpose of the practice rounds is to help you
become familiar with the computer interface and the trading rules.

This summary slide [SCREEN 12: Summary slide] will remain up during the
experiment to remind you of the rules on trading and on time.

Are there any questions before we proceed to the first practice round? [START
SERVER]

Please click on the icon marked Multistage Client on your desktop. Then enter
the number of your carrel (on the right side of the carrel), click enter, and then wait.
Remember that you are not allowed to use the computer for any other purposes while
waiting during the experiment (email, browsing, etc.).

[CONNECT EVERYONE AND START]

Please complete the practice rounds on your own. Feel free to raise your hand if
you have a question.
[WAIT FOR SUBJECTS TO COMPLETE PRACTICE ROUNDS]
The practice rounds are now over. Remember, you will not be paid the earnings from the practice rounds.
If you have any questions from now on, raise your hand, and an experimenter will come and assist you. We will now begin the paid rounds.
(Play 3 real rounds for Part 1) [After last ROUND, read:]
We will now proceed to Part 2. The rules for part 2 are the same as for part 1, but there are now 3 motions for your group to vote on. You can only trade one vote on one motion for one vote on another motion. The trading period will last 3 minutes. As before, 10 seconds will be added to the clock if a trade takes place within 10 seconds of the time limit.
The values and pass/fail preferences will be different from part 1, and your committee number as well as the composition of your committee may change. However, both the preferences and the composition of the committee will remain the same for all of Part 2. Part 2 will last for 5 rounds. At the end of the 5 rounds, we will stop and read the instructions for Part III.
Are there any questions before we begin?
(Play 5 real rounds for part 2) [After last ROUND, read:]
We will now proceed to Part 3. Part 3 is identical to Part 2, but the values and pass/fail preferences may be different. Your committee number as well as the composition of your committee may also change. Part 3 will again last for 5 rounds and again the trading period is 3 minutes (plus 10 seconds if a trade is concluded within 10 seconds of the time limit).
This is the end of the experiment. You should now see a popup window, which displays your total earnings in the experiment. Please record this and your Computer ID on your payment receipt sheet, rounding up to the nearest dollar. After you are done, please, click ok to close the popup window. Do not close any other windows on your computer and do not use your computer for anything else. Also enter 10 dollars on the show-up fee row. Add the two numbers and enter the sum as the total.
[Write output]
We will pay each of you in private in the next room in the order of your computer numbers. Remember you are under no obligation to reveal your earnings to the other players. Please do not use the computer; be patient, and remain seated until we call you to be paid. Do not converse with the other participants or use your cell phone. Thank you for your cooperation.
Figure 11. Screenshots for a subject posting a bid (on the left), and for a subject accepting a posted bid (on the right).

Figure 12. Confirmation request for the bidder.
References

