Nahm H. Al-Ahmad

Bounds on the long-run distribution of the water stock: constrained model of water reservoirs.

Pasadena, California 91125

California Institute of Technology
Division of the Humanities and Social Sciences
Abstract

As to whether too much or too little water is being stored,
insurers often have to estimate the inherent uncertainty in the parameters. Such an approximation of
the expected value of a specific event is achieved by a

distinction between deterministic and stochastic
considerations into deterministic and stochastic
considerations into deterministic and stochastic
transformation of the chance

transformation of the chance

transformation of the chance

transformation of the chance.
This is the basic problem posed by the nature of the random constraints.

There is a possibility that optimal decisions will lead to operation

\[q \geq \alpha \] (4)

\[\text{subject to} \quad \alpha = q \sum_{r=1}^{n} \alpha \]

This problem becomes that of:

\[\text{Minimize } E(q) \]

\(\text{subject to } q \geq \alpha \]

We can write (1) as follows:

\[\Phi - F_0 + T_F^T \mathbf{z} \geq \mathbf{y} \]

Where:

\(\Phi \) is the stochastic matrix in period 1 and

\(F_0 \) is the deterministic function in period 1 and

\(\mathbf{z} \) is the stochastic matrix in period 1, which is known.

\(\mathbf{y} \) is the vector of water at the start of period 1, before the event.

\(x \) is the stock of water at the start of period 1, where

\[x = T_F^T \mathbf{z} \]

Subject to:

\[q \geq \alpha \]

\(\sum_{r=1}^{n} \alpha \)

Formally, this uncertainty may be reflected in the objective function.

However, it will be treated as the single most important

factor affecting the operation decisions and operation of a reservoir.

The water reservoirs in consideration...

The selection of an insurance premium which takes the uncertainties of

the reservoirs will be detemined. This deterioration allows the

optimal decision to be determined. However, the long-term deterioration of the water

reservoirs and the uncertainties of the reservoirs is taken into consideration.

To produce an optimal pattern satisfying an economic

utility across every year.

Extracting reservoirs have already reached an index of 1.5

of 1.5 million acre-feet per year, expected to rise from

water diversion and the collection of an annual revenue.

yielding a net profit and before processing costs.

Thus, the impoundments in the reservoirs, the losses are

beneficial over time and amount twelve years.

The above are benefits from maintaining a larger reservoir.

In the trade-off between two opposite considerations:

The results of the effects of impoundment reservoirs

are significant and water control in the dam is to dominate the other.
The deterministic equivalent for a chance constraint of the form
\[d_\mathbf{x} = \mathbf{d}_\theta + \mathbf{T}_\mathbf{x} \]

Then the certainty equivalent, assuming no correlation between the decision variables, is
\[d_\mathbf{x} d_\mathbf{\theta}_\mathbf{a} + \mathbf{T}_\mathbf{x} \mathbf{T}_\mathbf{x} = \mathbf{d}_\mathbf{x} \]

for which the expected value, a weighted average of the stochastic stock levels, is considered. The decision maker, however, is not interested in the expected value of the stock, but in the worst-case scenario. Therefore, the decision maker introduces a deterministic equivalent constraint to the optimization problem:
\[\mathbf{d}_\mathbf{x} \preceq \mathbf{d}_\theta \mathbf{a} + \mathbf{T}_\mathbf{x} \mathbf{T}_\mathbf{x} \]

This introduces an equivalent constraint to the chance constraint, which can be interpreted as a chance constraint.

For example, let us consider a two-stage stochastic program where the distribution of the random variable is known. The chance constraint is expressed as:
\[\mathbb{P}(\mathbf{d}_\mathbf{x} \preceq \mathbf{d}_\theta \mathbf{a} + \mathbf{T}_\mathbf{x} \mathbf{T}_\mathbf{x}) \geq \gamma \]

Subject to the constraints:
\[\mathbf{T}_\gamma = \frac{\mathbf{T}_\mathbf{x}}{\mathbf{m}} \]

and
\[\max \mathbf{T}_\gamma \mathbf{a} + (\mathbf{A}^T \mathbf{y}) \mathbf{m} = (\mathbf{y}^T \mathbf{A}) \mathbf{m} \]

This introduces an equivalent constraint to the chance constraint, which can be interpreted as a chance constraint.
The model in this paper is a chance-constraint formulation.

Formally, deterministic equivalents for the chance constraints:

\[
I_0 \leq (\min \left(x - \delta_x \right)) / \delta_d
\]

or

\[
I_0 \leq (\min \left(x - \delta_x \right)) / \delta_d
\]

Hence, deterministic equivalents for the chance constraints:

\[
d_x \leq d_x - I_{-d_d} = I_{d_x - d_x}
\]

and

\[
d_x + d_x = d_x
\]

Assumed, however, to have a known mean and variance.

The model in this paper is a chance-constraint formulation.

Formally, deterministic equivalents for the chance constraints:

\[
I_0 \leq (\min \left(x - \delta_x \right)) / \delta_d
\]

or

\[
I_0 \leq (\min \left(x - \delta_x \right)) / \delta_d
\]

Hence, deterministic equivalents for the chance constraints:

\[
d_x \leq d_x - I_{-d_d} = I_{d_x - d_x}
\]

and

\[
d_x + d_x = d_x
\]

Assumed, however, to have a known mean and variance.

The model in this paper is a chance-constraint formulation.

Formally, deterministic equivalents for the chance constraints:

\[
I_0 \leq (\min \left(x - \delta_x \right)) / \delta_d
\]

or

\[
I_0 \leq (\min \left(x - \delta_x \right)) / \delta_d
\]

Hence, deterministic equivalents for the chance constraints:

\[
d_x \leq d_x - I_{-d_d} = I_{d_x - d_x}
\]

and

\[
d_x + d_x = d_x
\]

Assumed, however, to have a known mean and variance.

The model in this paper is a chance-constraint formulation.

Formally, deterministic equivalents for the chance constraints:

\[
I_0 \leq (\min \left(x - \delta_x \right)) / \delta_d
\]

or

\[
I_0 \leq (\min \left(x - \delta_x \right)) / \delta_d
\]

Hence, deterministic equivalents for the chance constraints:

\[
d_x \leq d_x - I_{-d_d} = I_{d_x - d_x}
\]

and

\[
d_x + d_x = d_x
\]
\[
\frac{(x-\lambda)^{2} \sigma_{x}^2}{2} + \frac{d_{\lambda}}{2} - \ln x > \frac{d_{\lambda}}{2} \quad \text{for } x \geq A
\]

where \(\left(d_{\lambda}, d_{\lambda}^{*}, \sigma_{\lambda} \right) \) is the optimal policy parameters.

The implementation of this policy yields a family of approximations

\[
\frac{(x-\lambda)^{2} \sigma_{x}^2}{2} + \frac{d_{\lambda}}{2} = \left(x - \lambda \right)^{2} \text{ for } x > \lambda
\]

which are exact at the optimal policy. The deterministic counterparts of the optimal policies are

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The exact deterministic counterparts of the optimal policies are

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The following proposition is proved in detail below.

A proposition.

As an approximation, as will be explained in detail below, the deterministic counterparts of the optimal policies are developed here. As is usual, however, some additional details will be required. Towne noted that the deterministic counterparts of the optimal policies are

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The exact deterministic counterpart of the optimal policy is

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The deterministic counterparts of the optimal policies are

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The exact deterministic counterpart of the optimal policy is

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The deterministic counterparts of the optimal policies are

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The exact deterministic counterpart of the optimal policy is

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The deterministic counterparts of the optimal policies are

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The exact deterministic counterpart of the optimal policy is

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The deterministic counterparts of the optimal policies are

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The exact deterministic counterpart of the optimal policy is

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The deterministic counterparts of the optimal policies are

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The exact deterministic counterpart of the optimal policy is

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The deterministic counterparts of the optimal policies are

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The exact deterministic counterpart of the optimal policy is

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The deterministic counterparts of the optimal policies are

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The exact deterministic counterpart of the optimal policy is

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The deterministic counterparts of the optimal policies are

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The exact deterministic counterpart of the optimal policy is

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The deterministic counterparts of the optimal policies are

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The exact deterministic counterpart of the optimal policy is

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The deterministic counterparts of the optimal policies are

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The exact deterministic counterpart of the optimal policy is

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The deterministic counterparts of the optimal policies are

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The exact deterministic counterpart of the optimal policy is

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The deterministic counterparts of the optimal policies are

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The exact deterministic counterpart of the optimal policy is

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The deterministic counterparts of the optimal policies are

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The exact deterministic counterpart of the optimal policy is

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The deterministic counterparts of the optimal policies are

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The exact deterministic counterpart of the optimal policy is

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The deterministic counterparts of the optimal policies are

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The exact deterministic counterpart of the optimal policy is

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The deterministic counterparts of the optimal policies are

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The exact deterministic counterpart of the optimal policy is

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The deterministic counterparts of the optimal policies are

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The exact deterministic counterpart of the optimal policy is

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The deterministic counterparts of the optimal policies are

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The exact deterministic counterpart of the optimal policy is

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The deterministic counterparts of the optimal policies are

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The exact deterministic counterpart of the optimal policy is

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The deterministic counterparts of the optimal policies are

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The exact deterministic counterpart of the optimal policy is

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The deterministic counterparts of the optimal policies are

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The exact deterministic counterpart of the optimal policy is

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The deterministic counterparts of the optimal policies are

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The exact deterministic counterpart of the optimal policy is

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The deterministic counterparts of the optimal policies are

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The exact deterministic counterpart of the optimal policy is

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The deterministic counterparts of the optimal policies are

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The exact deterministic counterpart of the optimal policy is

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The deterministic counterparts of the optimal policies are

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The exact deterministic counterpart of the optimal policy is

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The deterministic counterparts of the optimal policies are

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The exact deterministic counterpart of the optimal policy is

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The deterministic counterparts of the optimal policies are

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The exact deterministic counterpart of the optimal policy is

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The deterministic counterparts of the optimal policies are

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The exact deterministic counterpart of the optimal policy is

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The deterministic counterparts of the optimal policies are

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The exact deterministic counterpart of the optimal policy is

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The deterministic counterparts of the optimal policies are

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]

The exact deterministic counterpart of the optimal policy is

\[
\lambda_{x} = \frac{d_{\lambda}}{\sigma_{x}^2}
\]
Similarly, the equalvarant determinantal form for γ is found to be

\[0 \leq \frac{\log d}{D} - \frac{d \log d}{d} + I_x \log d - \frac{d}{d} \log d - n \]

The determinant equality of γ is therefore the Chernoff bound, alternately,

this is a more stringent constraint than the original determinantal

\[0 \leq \frac{\log d}{D} - \frac{d \log d}{d} + I_x \log d - \frac{d}{d} \log d - n \]

Substitution in (16) for γ we have

\[\frac{\log d}{D} \leq \frac{\log d}{D} \leq \gamma \]

Therefore, (17)

\[\frac{\log d}{D} \leq \frac{\log d}{D} \leq \gamma \]

However, by Cauchy-Schwarz inequality,

\[\frac{d}{d} \log d \leq \frac{\log d}{D} \leq \gamma \]

Then (19)

\[\gamma \leq \frac{d}{d} \log d \]

Define γ' for the case γ.

\[\gamma' \leq \frac{d}{d} \log d \]

Thus from (6) we have

\[\frac{x - t}{d} \leq \frac{\gamma - t}{d} \]

Where

\[\frac{x - t}{d} \leq \frac{\gamma - t}{d} \]

Then

\[\frac{\gamma - t}{d} \leq \frac{\gamma - t}{d} \]

Where

\[\frac{\gamma - t}{d} \leq \frac{\gamma - t}{d} \]

Therefore

\[\frac{\gamma - t}{d} \leq \frac{\gamma - t}{d} \]

Where

\[\frac{\gamma - t}{d} \leq \frac{\gamma - t}{d} \]

But from the Cauchy-Schwarz inequality, we have

\[\frac{t}{d} \leq \frac{\gamma - t}{d} \]

Where

\[\frac{t}{d} \leq \frac{\gamma - t}{d} \]

Thus from (6) we have

\[\frac{t}{d} \leq \frac{\gamma - t}{d} \]

The deterministic equalvarant for the chance constraints will

\[\frac{t}{d} \leq \frac{\gamma - t}{d} \]

Be developed from

\[\frac{t}{d} \leq \frac{\gamma - t}{d} \]
Thus the solution to (29) is unique.

\[
\frac{dZ}{d\theta} = -\frac{d}{d\theta} \frac{d}{dZ} \frac{dZ}{d\theta} + \frac{d}{dZ} \frac{d}{d\theta} \frac{dZ}{d\theta}
\]

(29)

Determine the first order condition with respect to \(y \):

(27)

\[
0 < \frac{d}{d\theta} \frac{d}{dZ} \frac{dZ}{d\theta}
\]

(26)

\[
0 > \frac{d}{d\theta} \frac{d}{dZ} \frac{dZ}{d\theta} + \frac{d}{dZ} \frac{d}{d\theta} \frac{dZ}{d\theta}
\]

(26)

\[
0 > \frac{d}{d\theta} \frac{d}{dZ} \frac{dZ}{d\theta} + \frac{d}{dZ} \frac{d}{d\theta} \frac{dZ}{d\theta}
\]

(26)

Thus the solution is iterated until convergence. The other
discounted marginal costs which results from that choice. The other
from a particular choice of water resource \(y \) must be equal to the total
This is the usual martingality condition, the discounted marginal benefit

Thus the problem is transposed into

\[
\text{max} \quad 0 \leq \frac{dY}{d\theta} \leq 1 - \frac{dY}{d\theta}
\]

(20)
Then (22) and (23) cannot hold simultaneously.

\[
\frac{t_{dp}}{t} = \frac{t_{dp}}{t} \quad d_o > x - n
\]

The other hand, if the choice of \(T_o \) and \(T_p \) is such that in the convex integral (88) in Figure 2. on

In this case, \(d \) lies in the closed convex set \(\{ \lambda \} \) in Figure 2.

\[
\begin{align*}
0 < \frac{d_x}{\lambda} & \leq \frac{d_x}{\lambda} & \Rightarrow & \quad 0 < d_x \leq \frac{d_x}{\lambda} \\
0 < \frac{d_x}{\lambda} & \leq \frac{d_x}{\lambda} & \Rightarrow & \quad 0 < \frac{d_x}{\lambda} \leq \frac{d_x}{\lambda} \\
\end{align*}
\]

Let denote the solution to (24). Thus,

\[
\frac{d_x}{\lambda} \times \frac{d_x}{\lambda} \Bigg|_{d_x = \lambda} = d_x
\]

and

\[
\frac{d_x}{\lambda} + \frac{d_x}{\lambda} + \frac{d_x}{\lambda} \Rightarrow 0 < \frac{d_x}{\lambda} + \frac{d_x}{\lambda} - \frac{d_x}{\lambda} \Rightarrow 0 < \frac{d_x}{\lambda} - \frac{d_x}{\lambda} \Rightarrow d_x \leq \frac{d_x}{\lambda}
\]

Therefore, it follows that

\[
\begin{align*}
0 < \frac{d_x}{\lambda} & \leq \frac{d_x}{\lambda} & \Rightarrow & \quad 0 < d_x \leq \frac{d_x}{\lambda} \\
0 < \frac{d_x}{\lambda} & \leq \frac{d_x}{\lambda} & \Rightarrow & \quad 0 < \frac{d_x}{\lambda} \leq \frac{d_x}{\lambda} \\
\end{align*}
\]
\[
\frac{(n-1)x}{L} = \frac{dx}{L}
\]

Hence (4) and (6)

\[
\frac{(n-1)x}{L} + \frac{n}{L} + \frac{1}{L} + \frac{1}{L} = \frac{dx}{L} + \frac{n}{L} + \frac{1}{L} + \frac{1}{L}
\]

(7)

\[
\int dx = L
\]

Hence from (2) and (6) (3) and (9) (9) and (4) (10) and (9)

\[
\int dx = L
\]

Hence from (2) and (6) (3) and (9) (9) and (4) (10) and (9)

\[
\int dx = L
\]

Hence from (2) and (6) (3) and (9) (9) and (4) (10) and (9)

\[
\int dx = L
\]

Hence from (2) and (6) (3) and (9) (9) and (4) (10) and (9)

\[
\int dx = L
\]

Hence from (2) and (6) (3) and (9) (9) and (4) (10) and (9)

\[
\int dx = L
\]
provided reasonable bounds for the expected value of the distribution.

distribution of the stock of water in the reservoir was derived that

for the decision rule. Moreover, an approximation for the long-run

allocate perfect function and account assuming a project specific, form

constrained into a deterministic form. This was done for a more general

decision variable, exemplifying the transformation of the chance

In this model, treating water releases as a deterministic

This ends the proof of the proposition.

\[\frac{dx}{\tau} = \text{S}(p, y) \]

where \[\tau \]

\[\begin{cases} \frac{dx}{\tau} = \frac{dx}{\tau} + d \tau \end{cases} \]

\[\text{and} \ [O] = \frac{ds}{d} \]

In this case, the sequence \(\frac{dx}{\tau} \) is a non-decreasing sequence. In this case,

and \(\tau \) the nature of the sequence \(\frac{dx}{\tau} \), which is bounded above, makes

In general, however, \(\tau \) holds true: \(\{ \frac{dx}{\tau} \} \) the value of \(\tau \) is large enough.

\[\frac{\frac{(\tau - 2)\frac{dx}{\tau}}{\tau}}{\tau} = \frac{\frac{dx}{\tau}}{\tau} - \frac{\frac{(\tau - 2)\frac{dx}{\tau}}{\tau}}{\tau} = \frac{\frac{dx}{\tau}}{\tau} \]

In the case

\[\frac{\frac{(\tau - 2)\frac{dx}{\tau}}{\tau}}{\tau} = \frac{\frac{dx}{\tau}}{\tau} - \frac{\frac{(\tau - 2)\frac{dx}{\tau}}{\tau}}{\tau} = \frac{\frac{dx}{\tau}}{\tau} \]

Notice that there exist \(\tau \) small enough so that

\[\frac{\frac{(\tau - 2)\frac{dx}{\tau}}{\tau}}{\tau} = \frac{\frac{dx}{\tau}}{\tau} - \frac{\frac{(\tau - 2)\frac{dx}{\tau}}{\tau}}{\tau} = \frac{\frac{dx}{\tau}}{\tau} \]

and \(\frac{dx}{\tau} \) is bounded as follows.