A SUPPORT PRICE THEOREM FOR THE CONTINUOUS
MODEL OF CAPITAL ACCUMULATION

Shinichi Takahama

1. INTRODUCTION

In this paper, we shall consider a model of capital accumulation and prove the existence of a support price path for the optimal path of capital accumulation. The considered economic model is a continuous time model of infinite horizon. Under some assumptions of differentiability, we can obtain a dual path for the optimal path by the Buler equation, or obtain the maximum principle of Pontryagin (1962). (See, for example, Haltin [1971] and Mautze [1976].) In this paper, however, we shall assume the appropriate convexity of the model, which is more natural in economics than differentiability. Thus, our problem is more difficult, so we treat the "convex" problem of optimal control without differentiability.

The convex problem of optimal control has been studied by Rockafellar [1971] and Haltin [1972]. In non-differentiable convex models, they proved the existence of a dual path for the optimal path which "supports" the Hamiltonian function. It is difficult to compare our argument directly with theirs, since their formulations are quite different from ours. However, our results are more general and useful in the following sense. First of all, our model considered in this paper is of infinite horizon. Second, our optimality criterion is in a general one, that is, the so-called Overtaking criterion, which is designed to capture the essence of economic dynamics.
2. MATHEMATICAL NOTATION

Let \(N \) be the set of all positive integers. For each \(n \in N, \mathbb{R}^n \) denotes the \(n \)-dimensional Euclidean space. When \(n = 1 \), we write \(\mathbb{R} \) instead of \(\mathbb{R}^1 \). For any \(x, y \in \mathbb{R}^n \), the inner product of \(x \) and \(y \) is denoted by \(x \cdot y \). The Euclidean norm of any \(x \in \mathbb{R}^n \) is denoted by \(\|x\| \), i.e., \(\|x\| = \sqrt{x \cdot x} \). For any subset \(U \) of \(\mathbb{R}^n \), \(\text{int } U \) denotes the interior of \(U \) in \(\mathbb{R}^n \) and \(\text{co } U \) denotes the convex hull of \(U \).

For any concave (or convex) function \(f: U \rightarrow R \cup \{-\infty\} \cup \{+\infty\} \) defined on a convex subset \(U \) of \(\mathbb{R}^n \), symbol \(\partial f(x) \) denotes the set of all subgradients of function \(f \) at \(x \in U \), i.e.,

\[
\partial f(x) = \{p \in \mathbb{R}^n | f(x) - p \cdot x \geq (or \leq) f(y) - p \cdot y \text{ for all } y \in U\}
\]

A mapping \(F: U \rightarrow 2^{\mathbb{R}^n} \) defined on a subset \(U \) of \(\mathbb{R}^n \) to the family of all non-empty subsets of \(\mathbb{R}^n \) is called a correspondence. Correspondence \(F \) is called lower semi-continuous at \(x_0 \in U \) if, for any \(y_0 \in F(x_0) \) and any sequence \(\{x_i\}_{i \in \mathbb{N}} \) in \(U \) converging to \(x_0 \), there exists a sequence \(\{y_i\}_{i \in \mathbb{N}} \) converging to \(y_0 \) such that \(y_i \in F(x_i) \) for all \(i \in \mathbb{N} \). The correspondence \(F \) is called lower semi-continuous if \(F \) is lower semi-continuous at all \(x \in U \).

A function \(f: E \rightarrow \mathbb{R} \) defined on a closed interval \(E \subset R \) to \(\mathbb{R} \) is called absolutely continuous if the restriction of \(f \) on any compact interval is absolutely continuous in the usual sense. Also, the derivative of \(f \) is denoted by \(f' \).

Any definitional term from measure theory, such as "integrable," "measurable," and "almost every" should be interpreted in the sense of Lebesgue.

3. THE MODEL

Let \(m \in N \) be the number of different commodities (capitals) in the economy. The technology of the economy is described by a correspondence \(Y: [0,\infty) \rightarrow 2^{\mathbb{R}^m \times \mathbb{R}^m} \) mapping \(t \in [0,\infty) \) to a subset \(Y(t) \) of \(\mathbb{R}^m \times \mathbb{R}^m \). The notation \((x,y) \in Y(t) \) means that at time \(t \) if we have amount \(x \) of commodities (capital), we can increase the amount of the commodities by \(y \). Namely, the pair \((x,y) \) is a technologically possible combination of the amount of capital stock and the level of investment at time \(t \).

Define a correspondence \(X: [0,\infty) \rightarrow 2^{\mathbb{R}^m} \) by

\[
X(t) = \{x \in \mathbb{R}^m | (x,y) \in Y(t) \text{ for some } y \in \mathbb{R}^m\}
\]

Assumption I:

(i) The correspondence \(Y \) is lower semi-continuous and convex-valued, i.e., \(Y(t) \) is convex for all \(t \in [0,\infty) \).

(ii) \(\text{int } X(t) \neq \emptyset \) for all \(t \in [0,\infty) \).

Social welfare at any point in time is represented by the instantaneous utility function \(u: \mathbb{R}^m \rightarrow R \), where \(u_Y \) is the "graph" of the correspondence \(Y \), i.e.,

\[
G_Y = \{(x,y,t) \in \mathbb{R}^m \times \mathbb{R}^m \times [0,\infty) | (x,y) \in Y(t)\}.
\]

Namely, for each \((x,y,t) \in G_Y \), \(u(x,y,t) \) is interpreted as the maximum level of social satisfaction that can be attained at time \(t \) if the amount of capital stock is \(x \) and the level of investment is \(y \).
Assumption II:

The function \(u \) is a continuous function such that, for each \(t \in [0,\infty) \), \(u(x,y,t) \) is a concave function in \((x,y)\).

Remark 3.1:

Allowing \(u(x,y,t) \) to assume the value \(-\infty\) on the boundary of \(Y(t) \) (where the boundary is taken relative to the smallest affine set containing \(Y(t) \)) would not be a more general assumption since setting \(u(x,y,t) \) equal to \(-\infty\) is equivalent to excluding \((x,y)\) from \(Y(t) \). We can always perform this latter operation because \(Y(t) \) is not necessarily closed. (Note that such an operation does not destroy the convexity of \(Y(t) \) because of the concavity of \(u(x,y,t) \).)

An absolutely continuous function \(k: [0,\infty) \rightarrow \mathbb{R}^m \) is said to be a feasible path between time \(r \) and time \(s \), where \(r, s \in [0,\infty) \) and \(r \leq s \), if \((k(t), k(t)) \in Y(t) \) for almost every \(t \in [r,s] \). An absolutely continuous function \(k: [0,\infty) \rightarrow \mathbb{R}^m \) is called a feasible path from time \(r \), where \(r \in [0,\infty) \), if \((k(t), k(t)) \in Y(t) \) for almost every \(t \in [r,\infty) \). For each \(x \in \mathbb{R}^m \) and \(r \in [0,\infty) \), let \(A(x,r) \) denote the set all feasible paths \(k \) from time \(r \) such that \(k(r) = x \).

Assumption III:

If \(k \) is a feasible path from time \(r \), then

\[
\int_r^s u(k(t), k(t), t) \, dt < +\infty \quad \text{for all } s \in [r,\infty).
\]

The above assumption enables us to define a criterion of optimality for feasible paths. A feasible path \(k_t \) from time \(r \) is said to be overtaken by a feasible path \(k \in A(k_t, r) \) if there exist \(\varepsilon > 0 \) and \(s_0 \geq r \) such that

\[
\int_r^{s_0} u(k(t), k(t), t) \, dt > \int_r^{s_0} u(k_t(t), k_t(t), t) \, dt + \varepsilon
\]

for all \(s > s_0 \). A feasible path \(k_t \) from time \(r \) is called an optimal path from time \(r \) if \(k_t \) is not overtaken by any \(k \in A(k_t, r) \).

Remark 3.2:

This kind of optimality criterion was introduced by von Weizsacker [1965] and Gale [1967]. An optimal path as defined here is commonly called a "weakly maximal" path by Brock [1970] and McKenzie [1976].
4. NECESSARY CONDITIONS FOR THE OPTIMAL PATHS

Let \(k_\ast \) be an optimal path from time 0. Then, we can define a function \(\tilde{u} : G_Y \rightarrow \mathbb{R} \) by

\[
(4.1) \quad \tilde{u}(x,y,t) = u(x,y,t) - u(k_\ast(t),k_\ast(t),t)
\]

for each \((x,y,t) \in G_Y\).

If \(\int_r^s u(k_\ast(t),k_\ast(t),t)dt > -\infty \) for all \(r, s \in [0,\infty) \) with \(r \leq s \), then we can define a function \(V : \mathbb{R}^m \times [0,\infty) \rightarrow \mathbb{R} \cup \{-\infty\} \) by

\[
(4.2) \quad V(x,r) = \sup_{k \in A(x,r)} \left[\liminf_{s \to \infty} \int_r^s \tilde{u}(k(t),k(t),t)dt \right]
\]

for each \((x,r) \in \mathbb{R}^m \times [0,\infty)\).

For each \(r \in [0,\infty) \), the "effective domain" of function \(V(\cdot,r) \) is denoted by \(D(r) \), i.e.,

\[
(4.3) \quad D(r) = \{ x \in \mathbb{R}^m | V(x,r) > -\infty \}.
\]

Here, we should note that the above (4.1), (4.2), and (4.3) are defined for a particular optimal path \(k_\ast \) from time 0, and that they depend on the optimal path.

Remark 4.1:

The above-defined function \(V \) is commonly called the value function, which was introduced by McKenzie [1976] in the framework of overtaking-optimality criterion. We can easily check that the function \(V \) has the following properties:

(i) For each \(r \in [0,\infty) \), \(V(x,r) \) is a concave function over all \(x \in D(r) \).

(ii) \(V(k_\ast(t),t) = 0 \), and \(k_\ast(t) \in D(t) \) for all \(t \in [0,\infty) \). In particular, \(D(t) \neq \emptyset \) for all \(t \in [0,\infty) \).

(iii) If \(k \) is a feasible path between time \(r \) and time \(s \), then

\[
V(k(r),r) \leq \int_r^s \tilde{u}(k(t),k(t),t)dt + V(k(s),s).
\]

Although the function \(\tilde{u} \) is continuous by Assumption II, the function \(\tilde{u} \) may not be continuous since \(k_\ast \) is not necessarily continuous. Therefore, we cannot identify the function \(\tilde{u} \) with the function \(u \).

Assumption IV:

(i) \(\int_r^s u(k_\ast(t),k_\ast(t),t)dt > -\infty \) for all \(r, s \in [0,\infty) \) with \(r \leq s \).

(ii) \(k_\ast(t) \in \text{int} X(t) \) for all \(t \in [0,\infty) \).

(iii) \(\partial V(k_\ast(0),0) \neq \emptyset \), where \(\partial V(\cdot,0) \) denotes the set of all subgradients for function \(V(\cdot,0) \).

Theorem I:

Let \(k_\ast \) be an optimal path from time 0 satisfying Assumption IV. Then, under Assumption I, II, and III, for any \(p \in \partial V(k_\ast(0),0) \) there exists an absolutely continuous function \(q_\ast : [0,\infty) \rightarrow \mathbb{R}^m \) with the following properties:

(i) \(q_\ast(0) = p \).

(ii) \(q_\ast(t) \in \partial V(k_\ast(t),t) \) for all \(t \in [0,\infty) \).

(iii) \(-\langle q_\ast(t),\eta(t) \rangle \in \partial u(k_\ast(t),k_\ast(t),t) \) for almost every \(t \in [0,\infty) \).
In the above, for each $t \in [0, \infty)$, symbols $\partial V(., t)$ and $\partial u(., ., t)$ denote the sets of all subgradients for functions $V(., t)$ and $u(., ., t)$ respectively.

A proof of this theorem will be given later. The theorem presented here is a counterpart of the theorem which was proved by McKenzie [1976, L 1] in a discrete time model.

There are some new features in our theorem which are not found in the usual duality theorems for continuous time models. First, we have replaced the usual assumption of finiteness of the utility integral over the infinite horizon for all feasible paths by the weaker set -- Assumptions III and IV (i), (iii).

Second, condition (i) of our theorem says that we can choose any point in $\partial V(k_0(0), 0)$ as an initial price for the support price path. That is, for any point in $\partial V(k_0(0), 0)$, there exists a price path which starts from the point and supports the optimal path.

Third, the theorem says that conditions (ii) and (iii) hold at the same time. In other words, the price path q_0 supports the value function $V(., t)$ as well as the utility function $u(., ., t)$ at every time t. The existence of a price path with such a property is not obvious in non-differentiable models.

Our theorem can be restated by using the Hamiltonian equation. Define a function $H: \mathbb{R}^m \times \mathbb{R}^m \times [0, \infty) \to \mathbb{R} \cup \{-\infty\} \cup \{+\infty\}$ by

$$H(p, x, t) = \text{Sup} \{u(x, y, t) + p \cdot y \mid (x, y) \in Y(t)\},$$

for each $(p, x, t) \in \mathbb{R}^m \times \mathbb{R}^m \times [0, \infty)$.

Remark 4.2:

The function H is commonly called the Hamiltonian function. It is well known that for each $t \in [0, \infty)$, $H(p, x, t)$ is a convex function in p and is a concave function in x.

Theorem I*:

Let k_0 be an optimal path from time 0 satisfying Assumption IV. Then, under Assumptions I, II, and III, for any $p \in \partial V(k_0(0), 0)$ there exists an absolutely continuous function $q_0: [0, \infty) \to \mathbb{R}^m$ with the following properties:

(i) $q_0(0) = p$.

(ii) $q_0(t) \in \partial V(k_0(t), t)$ for all $t \in [0, \infty)$.

(iii) $H(q_0(t), k_0(t), t) = u(k_0(t), k_0(t), t) + q_0(t) \cdot k_0(t)$ for almost every $t \in [0, \infty)$.

(iv) $k_0(t) \in \partial_1 H(q_0(t), k_0(t), t)$ for almost every $t \in [0, \infty)$.

(v) $-q_0(t) \in \partial_2 H(q_0(t), k_0(t), t)$ for almost every $t \in [0, \infty)$.

In the above, for each $t \in [0, \infty)$, symbols $\partial_1 H(., k_0(t), t)$ and $\partial_2 H(q_0(t), ., t)$ denote the sets of all subgradients for functions $H(., k_0(t), t)$ and $H(q_0(t), ., t)$ respectively.

Remark 4.3:

Theorem I and Theorem I* are equivalent to each other.

In order to show the equivalence, it suffices to prove that condition (iii) of Theorem I implies conditions (iii), (iv), and (v) of...
Theorem I', and conversely that conditions (iii) and (v) of Theorem I' imply condition (iii) of Theorem I. Although the verification is not entirely trivial, we shall not include it since the equivalence is a well-known fact.

The following theorem outlines a relation between the value function and the utility function, which was proved under somewhat stronger assumptions by Benveniste and Scheinkman [1971, Prop. 1].

Theorem II:

Let k_α be an optimal path from time 0 satisfying Assumption IV. Then, under Assumptions I, II, and III, the following holds:

$$\partial V(k_\alpha(t), t) \subset \partial^2 u(k_\alpha(t), t)$$

for almost every $t \in [0, \omega)$,

where symbol $\partial^2 u(k_\alpha(t), t)$ denotes the set of all subgradients for function $u(k_\alpha(t), t)$ for each $t \in [0, \omega)$.

This theorem can be proved by using Theorem I. The proof will be given in a following section.

5. **THE OUTLINE OF THE PROOF OF THEOREM I**

In order to prove Theorem I, it suffices to show that the following auxiliary theorem is true.

Auxiliary Theorem:

Let k_α be an optimal path from time 0 satisfying Assumption IV. Then, under Assumptions I, II, and III, for any $p \in \partial V(k_\alpha(0), 0)$ there exists an absolutely continuous function $q_1 : [0, 1] \to \mathbb{R}^m$ with the following properties:

1. $q_1(0) = p$
2. $q_1(t) \in \partial V(k_\alpha(t), t)$ for all $t \in [0, 1]$.
3. $(\dot{q}_1(t), q_1(t)) \in \partial u(k_\alpha(t), k_\alpha(t), t)$ for almost every $t \in [0, 1]$.

The auxiliary theorem implies that since k_α is also an optimal path from time 1, there exists an absolutely continuous function $q_2 : [1, 2] \to \mathbb{R}^m$ with the following properties:

$$q_2(1) = q_1(1).$$

$$q_2(t) \in \partial V(k_\alpha(t), t) \text{ for all } t \in [1, 2].$$

$$\partial u(k_\alpha(t), k_\alpha(t), t) \text{ for almost every } t \in [1, 2].$$

By repeating the same argument and constructing such a function $q_n : [n-1, n] \to \mathbb{R}^m$ for each $n \in \mathbb{N}$, we can obtain an absolutely continuous function $q_* : [0, \omega) \to \mathbb{R}^m$, which is defined by

$$q_*(t) = q_n(t) \text{ when } t \in [n-1, n].$$
Obviously, by construction, function \(q_k \) satisfies all the conditions required in Theorem I. Thus, we know that the Auxiliary Theorem implies Theorem I.

Furthermore, we can easily show that the following two propositions imply the Auxiliary Theorem.

Proposition I:

For all \(t_o \in [0, \infty) \), there exist two numbers \(r, s \in [0, \infty) \) with \(r \leq t_o < s \) (\(r = t_o \) only when \(t_o = 0 \)) such that there exist feasible paths \(k_i \) between time \(r \) and time \(s \), \(i = 0, 1, \ldots, m \), with the following properties:

(i) \(k_i(t) \in \text{int co} \{k_0(t), k_1(t), \ldots, k_m(t)\} \) for all \(t \in [r, s] \).

(ii) \(\int_r^s u(k_i(t), k_i(t), t) \, dt \) is bounded for all \(i = 0, 1, \ldots, m \).

Proposition II:

Suppose that there exist feasible paths \(k_i \) between time \(r \) and times, \(i = 0, 1, \ldots, m \), satisfying conditions (i) and (ii) in Proposition I. Then, for any \(p \in \exists \lambda(k_r) \), there exists an absolutely continuous function \(q : [r, s] \to \mathbb{R}^m \) with the following properties:

(i) \(q(t) = p \).

(ii) \(q(t) \in \exists \lambda(k_r(t), t) \) for all \(t \in [r, s] \).

(iii) \(-\langle \dot{q}(t), q(t) \rangle \in \exists u(k_r(t), k_r(t), t) \) for almost every \(t \in [r, s] \).

In fact, since \([0,1]\) is compact, Proposition I implies that there exist finitely many pairs \(\{r_i, s_i\} \) with \(r_i < s_i \), \(i = 1, 2, \ldots, k \), such that \([0,1] \subset \bigcup_{i=1}^k [r_i, s_i] \), and such that each pair \(\{r_i, s_i\} \) has the desirable properties of the pair \(\{r, s\} \) in the proposition. Without loss of generality, we can assume that

\[0 = r_1 < s_1 < r_2 < s_2 < r_3 < \ldots < s_{k-1} = r_k < s_k = 1. \]

Since \(p \in \exists \lambda(k_r(0), 0) \) by assumption, by applying Proposition 2 to each pair \(\{r_i, s_i\} \) successively from \(i = 1 \) to \(k \), we can construct the function \(q_\lambda : [0,1] \to \mathbb{R}^m \) desired in Auxiliary Theorem.

Thus, all we have to do is to prove Propositions I and II. This will be done in the following two sections.

Remark 5.1: Proposition II may be called "the local existence theorem of a support price path. The proposition shows a sufficient condition for the existence of such a support price path, while Proposition I insures that the sufficient condition is indeed satisfied."
6. Proof of Proposition I

The following is one of the fundamental lemmas in our argument.

Lemma I:

For any \((x_0, y_0, t_0) \in C_1\) with \(x_0 \in \text{Int} X(t_0)\), there exist two numbers \(r, s \in [0, \infty)\) with \(r \leq t_0 < s\) (\(r = t_0\) only when \(t_0 = 0\)) such that there exists an absolutely continuous function \(h: [r, s] \rightarrow \mathbb{R}^n\) with the following properties:

(i) \((h(t), \dot{h}(t)) \in Y(t)\) for almost every \(t \in [r, s]\).

(ii) The derivative \(\dot{h}\) is a continuous function.

(iii) \((h(t_0), \dot{h}(t_0)) = (x_0, y_0)\).

Proposition I can be easily proved by this lemma. In fact, since \(k_* (t_0) \in \text{Int} X(t_0)\), there exist vectors \(v_0, v_1, \ldots, v_m \in \text{Int} X(t_0)\) such that \(k_* (t_0) \in \text{Int} \{v_0, v_1, \ldots, v_m\} \subset \text{Int} X(t_0)\). Therefore, by Lemma I, for each \(i = 0, 1, \ldots, m\), there exist two numbers \(r_i, s_i \in [0, \infty)\) with \(r_i \leq t_0 < s_i\) (\(r_i = t_0\) only when \(t_0 = 0\)) such that there exists an absolutely continuous function \(h_i: [r_i, s_i] \rightarrow \mathbb{R}^n\) with the following properties:

(6.1) \((h_i(t), \dot{h}_i(t)) \in Y(t)\) for almost every \(t \in [r_i, s_i]\).

(6.2) \(\dot{h}_i(t)\) is a continuous function.

(6.3) \(h_i(t_0) = v_i\).

From (6.3), it follows that \(k_* (t_0) \in \text{Int} \{h_0(t_0), h_1(t_0), \ldots, h_m(t_0)\}\). Therefore, since \(h_0, h_1, \ldots, h_m\) are continuous functions, there exist two numbers \(r, s \in [0, \infty)\) with \(r \leq t_0 < s\) for all \(i = 0, 1, \ldots, m\) (\(r = t_0\) only when \(t_0 = 0\)) such that \(k_* (t) \in \text{Int} \{h_0(t), h_1(t), \ldots, h_m(t)\}\) for all \(t \in [r, s]\).

Then, by (6.1), \(k_0, k_1, \ldots, k_m\) are feasible paths between time \(r\) and time \(s\), and, by (6.4), satisfy condition (i) of Proposition I. Also, by (6.2) and Assumption II, for each \(i = 0, 1, \ldots, m\), \(u(k_i(t), k_i(t))\), \(i\), can be regarded as a continuous function of \(t \in [r, s]\), and its integral exists. Thus, by definition of \(\dot{u}\) and Assumptions III and IV(i), condition (ii) of Proposition I is proved. This completes the proof of Proposition I.

In order to prove Lemma I, we need the following three sublemmas.

Sublemma 6.1:

The correspondence \(X: [0, \infty) \rightarrow 2^{\mathbb{R}^n}\) is lower semi-continuous and convex-valued.

Proof: This sublemma is straightforward from Assumption II(i). Q.E.D.

Sublemma 6.2:

For any \(x_0 \in \mathbb{R}^n\) and \(t_0 \in [0, \infty)\) with \(x_0 \in \text{Int} X(t_0)\), there exist a compact neighborhood \(U\) of \(x_0\) and two numbers \(r, s \in [0, \infty)\) with \(r \leq t_0 < s\) (\(r = t_0\) only when \(t_0 = 0\)) such that \((x, t) \in U \times [r, s]\) implies \(x \in \text{Int} X(t)\).
Proof: Suppose that this sublemma is not true. Then, there exists a sequence \(\{(x_n, t_n)\}_{n \in \mathbb{N}}\) in \(\mathbb{R}^m \times [0, \infty)\) converging to a point \((x_o, t_o)\) with \(x_o \neq \text{int} X(t_o)\) such that \(x_n \notin \text{int} X(t_n)\) for all \(n \in \mathbb{N}\).

Since \(x_o \in \text{int} X(t_o)\), we can find vectors \(\{v_0^n, v_1^n, \ldots, v_m^n\} \in X(t_o)\) such that \((6.5)\) \(x_o \in \text{int} \cap \{v_0^n, v_1^n, \ldots, v_m^n\}\).

Since the correspondence \(X\) is lower semi-continuous by Sublemma 6.1, for each \(i = 0, 1, \ldots, m\), there exists a sequence \(\{v_i^n\}_{n \in \mathbb{N}}\) converging to \(v_i\) such that \(v_i^n \in X(t_n)\) for all \(n \in \mathbb{N}\). Therefore, from (6.5), it follows that \(x_n \in \text{int} \cap \{v_0^n, v_1^n, \ldots, v_m^n\}\) for all sufficiently large \(n \in \mathbb{N}\).

Since \(X(t_n)\) is convex by Sublemma 6.1, this implies that \(x_n \in \text{int} X(t_n)\) for all sufficiently large \(n \in \mathbb{N}\). This is a contradiction.

Q.E.D.

Let \(G_X\) denote the "graph" of the correspondence \(X\), i.e.,

\[G_X = \{(x, t) \in \mathbb{R}^m \times [0, \infty) \mid x \in X(t)\} \]

Define a correspondence \(F: G_X \to 2^{\mathbb{R}^m}\) by

\[F(x, t) = \{y \in \mathbb{R}^m \mid (x, y) \in Y(t)\} \text{ for each } (x, t) \in G_X \]

Sublemma 6.3:
The correspondence \(F\) is convex-valued and lower semi-continuous at any \((x_o, t_o) \in G_X\) with \(x_o \in \text{int} X(t_o)\).

Proof: Suppose that \(x_o \in \text{int} X(t_o)\), \(y_o \in F(x_o, t_o)\), and that a sequence \(\{(x_n, t_n)\}_{n \in \mathbb{N}}\) in \(G_X\) converges to \((x_o, t_o)\). Since \(x_o \in \text{int} X(t_o)\), there are \(\{v_0^n, w_0^n\}, (v_1^n, w_1^n), \ldots, (v_m^n, w_m^n) \in Y(t_o)\) such that

\[(6.6)\] \(x_o \in \text{int} \cap \{v_0^n, v_1^n, \ldots, v_m^n\}\).

Since the correspondence \(Y\) is lower semi-continuous by Assumption I (7), for each \(i = 0, 1, \ldots, m\), we have a sequence \(\{v_i^n, w_i^n\}_{n \in \mathbb{N}}\) converging to \((v_i^n, w_i^n) \in Y(t_n)\) for all \(n \in \mathbb{N}\). Also, since \((x_o, y_o) \in Y(t_o)\), for the same reason, we have a sequence \(\{(x_i^n, y_i^n)\}_{n \in \mathbb{N}}\) converging to \((x_o, y_o)\) such that \((x_i^n, y_i^n) \in Y(t_n)\) for all \(n \in \mathbb{N}\).

By (6.6), we know that there is a number \(\epsilon_o > 0\) such that, for all sufficiently large \(n \in \mathbb{N}\),

\[(6.7)\] \(\|x - x_o\| < \epsilon_o \text{ implies } x \in \text{int} \cap \{v_0^n, v_1^n, \ldots, v_m^n\} \subset X(t_n)\).

Also, obviously, for all sufficiently large \(n \in \mathbb{N}\), we have

\[(6.8)\] \(\|x_n - y_n\| < \epsilon_o / 3 \text{ and } \|x_n - x_o\| < \epsilon_o / 3\).

Therefore, in proving the lower semi-continuity of \(F\), we can assume without loss of generality that (6.7) and (6.8) are true for all \(n \in \mathbb{N}\).

For each \(n \in \mathbb{N}\) with \(x'_n \neq x_n\), pick a point \(x''_n\) such that

\[\epsilon_o / 3 < \|x''_n - x_o\| < \epsilon_o \text{ and } x_n = \theta_n x'_n + \left(1 - \theta_n\right) x''_n \text{ for some } 0 \leq \theta_n \leq 1. \]

And for each \(n \in \mathbb{N}\) with \(x'_n = x_n\), let \(x''_n = x_n\) and \(\theta_n = 1\). Then, in any case, \(x_n = \theta_n x'_n + \left(1 - \theta_n\right) x''_n \) for all \(n \in \mathbb{N}\). Clearly, \(\theta_n\) goes to 1 as \(n\) goes to \(\infty\), since \(x_n\) and \(x'_n\) converge to \(x_o\).

Moreover, for each \(n \in \mathbb{N}\), pick a point \(y''_n\) such that \((x'_n, y''_n) \in Y(t_n)\) and \(y''_n \in \text{int} \{w_0^n, w_1^n, \ldots, w_m^n\}\). This is possible, since \(\|x''_n - x_o\| < \epsilon_o\), i.e., by (6.7), \(x''_n \in \text{int} \cap \{v_0^n, v_1^n, \ldots, v_m^n\}\) for all \(n \in \mathbb{N}\). Clearly, \(\{y''_n\}_{n \in \mathbb{N}}\) is a bounded sequence.

Let \(y_n = \theta_n y'_n + \left(1 - \theta_n\right)y''_n\) for each \(n \in \mathbb{N}\). Then, \((x_n, y_n) \in Y(t_n)\), that is, \(y_n \in F(x_n, t_n)\) for all \(n \in \mathbb{N}\). Furthermore, \(y_n\) goes to \(y_o\) as \(n\) goes to \(\infty\), since \(y'_n\) converges to \(y_o\), \(\theta_n\) converges to 1, and \(\{y''_n\}_{n \in \mathbb{N}}\) is
bounded. This proves the lower semi-continuity of correspondence F.

Moreover, correspondence F is easily shown to be convex-valued, since correspondence Y is convex-valued.

Q.E.D.

Proof of Lemma I: Since $x_0 \in \text{int } X(t_0)$, by Sublemma 6.2, we have a compact neighborhood U of x_0 and two numbers r', $s' \in [0, \infty)$ with $r' \leq t_0 < s'$ ($r' = t_0$ only when $t_0 = 0$) such that $(x, t) \in U \times [r', s']$ implies $x \in \text{int } X(t)$.

Define a correspondence $F': U \times [r', s'] \to \mathbb{R}^n$ by

$$F'(x, t) = \begin{cases} [y_0] & \text{for } (x, t) = (x_0, t_0) \\ F(x, t) & \text{for } (x, t) \neq (x_0, t_0). \end{cases}$$

By Sublemma 6.3, we can easily prove that correspondence F' is convex-valued and lower semi-continuous. Therefore, by a continuous selection theorem in Michael [1956, Th. 3.1"], we have a continuous function $f: U \times [r', s'] \to \mathbb{R}^n$ such that $f(x, t) \in F'(x, t)$ for all $(x, t) \in U \times [r', s']$. Hence, by a well-known theorem on the existence of solutions for ordinary differential equations (for example, see Filippov [1964, Th.4]), we have two numbers $r, s \in [r', s']$ with $r \leq t_0 < s$ ($r = t_0$ only when $t_0 = r'$) and an absolutely continuous function $h: [r, s] \to \mathbb{R}^n$ such that $h(t_0) = x_0$ and $h(t) = f(h(t), t)$ for almost every $t \in [r, s]$.

(When $r' = t_0$, we cannot apply such a theorem directly to function f, but to a continuous extension f' of f defined by

$$f'(x, t) = \begin{cases} f(x, t) & \text{for } (x, t) \in U \times [r', s'] \\ f(x, r') & \text{for } (x, t) \in U \times [r' - 1, r'). \end{cases}$$

Therefore, our argument is true even in the case of $r' = t_0$.)

By construction of function f, we have conditions (i) and (iii) of Lemma I. Also, $\dot{h}(t) = f(h(t), t)$ is continuous since f is continuous. Namely, we have condition (ii) of the lemma.

Q.E.D.
7. Proof of Proposition II

The following lemma will play a central role in our argument.

Lemma II:

Suppose that there exist feasible paths \(k_i \) between time \(r \) and time \(s \), \(i = 0, 1, \ldots, m \), satisfying conditions (i) and (ii) in Proposition I. Then, for any \(t', t'' \in [r, s] \) with \(t' \leq t'' \) and any \(p' \in \partial V(k_i(t'), t') \), there exists \(p'' \in \partial V(k_i(t''), t'') \) such that

\[
\int_{t'}^{t''} u(k_i(t), k_i(t), t)dt - p'.k_i(t') + p''.k_i(t'') \\
\geq \int_{t'}^{t''} u(k(t), k(t), t)dt - p'.k(t') + p''.k(t'')
\]

for all feasible path \(k \) between time \(t' \) and \(t'' \).

Proof: By definition of the value function \(V \), we have

\[
V(k(t'), t') \geq \int_{t'}^{t''} u(k(t), k(t), t)dt + V(k(t''), t'')
\]

for all feasible path \(k \) between time \(t' \) and \(t'' \). Also, since \(p' \in \partial V(k_i(t'), t') \), we have

\[
V(k_i(t'), t') - p'.k_i(t') \geq V(x, t') - p'.x
\]

for all \(x \in \mathbb{R}^m \).

The above two inequalities imply that

\[
\int_{t'}^{t''} u(k_i(t), k_i(t), t)dt + V(k_i(t''), t'') - p'.k_i(t') \\
\geq \int_{t'}^{t''} u(k(t), k(t), t)dt + V(k(t''), t'') - p'.k(t')
\]

for all feasible path \(k \) between time \(t' \) and \(t'' \).

Let \(\alpha_\ast \) denote the left-hand side of inequality (7.1). Define two subsets \(C_1 \) and \(C_2 \) of \(\mathbb{R}^{m+1} \) by

\[
C_1 = \{(x, \alpha) \in \mathbb{R} \times \mathbb{R}^m \mid x = k(t'') \text{ and } \alpha \geq \alpha_\ast - \int_{t'}^{t''} u(k(t), k(t), t)dt + p'.k(t') \}
\]

for some feasible path \(k \) between time \(t' \) and \(t'' \)

and

\[
C_2 = \{(x, \alpha) \in \mathbb{R} \times \mathbb{R}^m \mid x \in D(t'') \text{ and } \alpha \leq V(x, t'') \}
\]

We can easily check that both \(C_1 \) and \(C_2 \) are non-empty and convex.

Also, from (7.1), it follows that they are disjoint. Therefore, by a well-known separation theorem, we have a non-zero vector \((\pi, -p'') \in \mathbb{R} \times \mathbb{R}^m \) such that

\[
\pi[\alpha - \int_{t'}^{t''} u(k(t), k(t), t)dt + p'.k(t')] \leq p''.\alpha
\]

for all \(x \in \mathbb{R}^m \) and all feasible path \(k \) between time \(t' \) and \(t'' \)

with \(|\int_{t'}^{t''} u(k(t), k(t), t)dt| < \infty\).

Put \(k = k_i \) in (7.2). Then,

\[
\pi V(k_i(t'), t') - p''.k_i(t') \geq \pi V(x, t'') - p''.x \text{ for all } x \in D(t'').
\]
Also, put \(x = k_s(t^*) \) in (7.2). Then,

\[
(7.4)\quad \eta \left[\int_{t'}^{t^*} \tilde{u}(k(t), \dot{k}(t), t) dt - p'.k(t^*) \right] + p''.k(t^*) \geq \eta \left[\int_{t'}^{t^*} u(k(t), \dot{k}(t), t) dt - p'.k(t^*) \right] + p''.k(t^*)
\]

for all feasible path \(k \) between time \(t' \) and time \(t^* \) with

\[
|\int_{t'}^{t^*} \tilde{u}(k(t), \dot{k}(t), t) dt| < \infty.
\]

We can easily see that the particular forms of \(C_1 \) and \(C_2 \) imply \(\pi \geq 0 \). Suppose that \(\pi = 0 \). Then, it follows from (7.4) that

\[p''.k(t^*) \geq p''.k(t^*) \] for all \(i = 0, 1, \ldots, m \), where \(k_0, k_1, \ldots, k_m \) are functions assumed to exist in this lemma. Therefore, since \(k_0, k_1, \ldots, k_m \) satisfy condition (1) of Proposition I, we can conclude that \(p'' = 0 \). However, this is a contradiction to the premise that \((\pi, -p'') \neq 0 \). Thus, we have proved that \(\pi > 0 \).

Without loss of generality, we can put \(\pi = 1 \). Therefore, by (7.3), we have \(p'' \in \mathcal{A}(k_s(t^*), t') \). Also, since \(\pi = 1 \), in (7.4) we can ignore the condition of \(\int_{t'}^{t^*} \tilde{u}(k(t), \dot{k}(t), t) dt \). Moreover, by definition of \(\tilde{u} \), we can replace \(\tilde{u} \) in (7.4) by \(u \). This completes the proof of Lemma II.

Q.E.D.

Now let us begin to prove Proposition II. Pick \(p \in \mathcal{A}(k_s(x), r) \).

For each \(n \in \mathbb{N} \), define a finite subset \(T_n \) of \([x, s]\) by

\[
T_n = \left\{ t \in [x, s] \mid t = x + \frac{i(s-x)}{2^n}, i = 0, 1, \ldots, 2^n \right\}.
\]

Apply Lemma II to each pair \(\left[x + \left(\frac{i-1}{2^n}(s-x) \right), x + \frac{i(s-x)}{2^n} \right] \) successively from \(i = 1 \) to \(2^n \). Then we have \((2^n+1) \)-tuple of vectors denoted by \(\left[p_n(t) \mid t \in T_n \right] \), where \(p_n(x) = p \), such that

\[
(7.5)\quad \left[p_n(t) \in \mathcal{A}(k_s(t), t) \right] \text{ for all } t \in T_n \text{ and }
\]

\[
(7.6)\quad \int_{t'}^{t^*} u(k_s(t), \dot{k}(t), t) dt - p_n(t^*).k_s(t^*) + p_n(t^*).k_s(t^*)
\]

\[
\geq \int_{t'}^{t^*} u(k(t), \dot{k}(t), t) dt - p_n(t^*).k(t^*) + p_n(t^*).k(t^*)
\]

for all \(t', t^* \in T_n \) with \(t' \leq t^* \) and all feasible path \(k \) between time \(t' \) and time \(t^* \).

We can prove the following:

\[
(7.7)\quad \text{Set } \left[p_n(t) \mid n \in \mathbb{N} \text{ and } t \in T_n \right] \text{ is bounded.}
\]

Suppose that this is not true. Then, there is an infinite subset \(N_0 \) of \(\mathbb{N} \) such that for each \(n \in N_0 \) we can pick up \(t_n \in T_n \) and \(\|p_n(t_n)\| \) goes to \(\infty \) as \(n \in N_0 \) goes to \(\infty \). Without loss of generality, we can assume that

\[
\lim_{n \to \infty} t_n = t_0 \quad \text{and} \quad \lim_{n \to \infty} \frac{p_n(t_n)}{\|p_n(t_n)\|} = p_0 \neq 0.
\]

On the other hand, by (7.6) we have

\[
\left[\int_{t'}^{t_n} u(k_s(t), \dot{k}(t), t) dt - p.s.s. + p_n(t_n).k_s(t_n^*) \right] \|p_n(t_n)\|
\]

\[
\geq \left[\int_{t'}^{t^*} u(k(t), \dot{k}(t), t) dt - p.s.s. + p_n(t_n).k(t_n^*) \right] \|p_n(t_n)\|
\]

for all \(n \in N_0 \) and all feasible path \(k \) between time \(r \) and time \(s \).
Therefore, in the limit, $p_0 \cdot k_s(t_0) \geq p_0 \cdot k(t_0)$ for all feasible path k between time r and time s. By assumption of the existence of functions k_0, k_1, \ldots, k_n, satisfying condition (i) of Proposition I, we can conclude that $p_0 = 0$. This is a contradiction. Thus, (7.7) is proved.

Let $T = \bigcup_{n \in \mathbb{N}} T_n$. We can prove the following:

\[(7.8)\] There is a bounded function $q_0: T \to \mathbb{R}^m$ with the following properties:

(i) $q_0(r) = p$.

(ii) $q_0(t) \in \partial V(k_s(t), t)$ for all $t \in T$.

(iii) $\int_{t'}^{t''} u(k_s(t), \dot{k}_s(t), t)dt - q_0(t'), k_s(t') + q_0(t''), k_s(t'')$ for all $t', t'' \in T$ with $t' \leq t''$ and all feasible path k between time t' and time t''.

For each $t \in T$, we have a sequence $\{p_n(t) \mid n \geq 1 \text{ and } n \in \mathbb{N}\}$. Since T is a finite set, by (7.7) we can find an infinite subset N_1 of \mathbb{N} such that for any $t \in T$, sequence $\{p_n(t) \mid n \in N_1\}$ converges to a point, say $q_0(t)$. Then, for each $t \in T$, we have a sequence $\{p_n(t) \mid n \geq 1 \text{ and } n \in N_1\}$ converging to a point, say $q_0(t)$. (Although $T_1 \subset T_2$, this notation is consistent since $N_1 = N_2$.) By repeating this procedure, we have $N_1 \supset N_2 \supset \ldots$ such that for any $i \in \mathbb{N}$ and any $t \in T$, sequence $\{p_n(t) \mid n \geq i \text{ and } n \in \mathbb{N}\}$ converges to a point $q_0(t)$. Therefore, by picking up a number n_i for each N_i, we have an infinite subset of \mathbb{N} denoted by $N_\infty = \{n_1, n_2, n_3, \ldots\}$ such that if $t \in T_i$ for some $i \in \mathbb{N}$, then sequence $\{p_n(t) \mid n \geq i \text{ and } n \in N_\infty\}$ converges to $q_0(t)$. In this way, we can define a function $q_0: T \to \mathbb{R}^m$, which is bounded because of (7.7). Obviously, condition (i) of (7.8) holds, since $p_n(r) = p$ for all $n \in \mathbb{N}$. If $t \in T$, i.e., $t \in T_i$, for some $i \in \mathbb{N}$, then (7.5) is true for all $n \in N_\infty$ with $n \geq i$. Since set $\partial V(k_s(t), t)$ is closed, condition (ii) of (7.8) holds in the limit. Also, if $t', t'' \in T$ and $t' \leq t''$, then $t', t'' \in T_j$ for some $j \in \mathbb{N}$. Therefore, (7.6) is true for all $n \in N_\infty$ with $n \geq i$. Thus, condition (iii) of (7.8) holds in the limit. This completes the proof of (7.8).

Suppose that function q_0 is not continuous. Then, since function q_0 is bounded, there are sequences $[t_n']_{n \in \mathbb{N}}$ and $[t_n'']_{n \in \mathbb{N}}$ converging to a point t_0 such that $t_n' < t_0 < t_n''$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} (q_0(t_n') - q_0(t_n'')) = p \neq 0$. By condition (iii) of (7.8), we have $\exists k_s(t_0) \geq \lim_{n \to \infty} p \cdot k(t_0)$ for all feasible path k between time r and time s. By assumption of the existence of functions k_0, k_1, \ldots, k_n satisfying condition (i) of Proposition I, we can conclude that $p = 0$. This is a contradiction. Thus, function q_0 is proved to be a continuous function. Hence, since T is a dense subset of $[r, s]$, function q_0 can be uniquely extended to a continuous function, say $q: [r, s] \to \mathbb{R}^m$.

We can prove the following:
The continuous function \(q: [r, s] \rightarrow \mathbb{R}^m \) satisfies the following conditions:

(i) \(q(r) = p \).

(ii) \(q(t) \in \partial V(k_s(t), t) \) for all \(t \in [r, s] \).

(iii) \(\int_t^{t'} u(k_s(t), \dot{k}_s(t), t)dt - q(t').k_s(t') + q(t'').k_s(t'') \geq \int_t^{t''} u(k(t), \dot{k}(t), t)dt - q(t').k(t') + q(t'').k(t'') \)

for all \(t', t'' \in [r, s] \) with \(t' \leq t'' \) and all feasible path \(k \) between time \(t' \) and time \(t'' \).

Condition (i) of (7.9) obviously follows from condition (i) of (7.8). Also, since function \(q \) is a continuous extension of function \(q_o \) and since \(T \) is dense in \([r, s] \), condition (iii) of (7.8) implies condition (iii) of (7.9). To prove condition (ii) of (7.9), let \(x_0 \in \text{int} X(t_o) \) and \(t_0 \in (r, s] \). Then, by Lemma I, we have an absolutely continuous function \(h: [r', t_o] \rightarrow \mathbb{R}^m \), where \(r \leq r' < t_o \), satisfying the following conditions:

\((h(t), \dot{h}(t)) \in \gamma(t) \) for almost every \(t \in [r', t_o] \).

The derivative \(h \) is a continuous function.

\(h(t_0) = x_0 \).

Since \(T \) is dense in \([r, s] \), we have a sequence \([t_n]_{n \in \mathbb{N}} \) converging to \(t_0 \) such that \(t_n \in T \cap (r', t_o) \) for all \(n \in \mathbb{N} \). Therefore, by condition (ii) of (7.8), for all \(n \in \mathbb{N} \)

\[V(k_s(t_n), t_n) - q(t_n).k_s(t_n) \geq V(h(t_n), t_n) - q(t_n).h(t_n). \]

Namely, by definition of the value function, for all \(n \in \mathbb{N} \)

\[\int_t^{t_0} u(k_s(t), \dot{k}_s(t), t)dt + V(k_s(t_0), t_0) - q(t_n).k_s(t_n) \]

\[\geq \int_t^{t_n} u(h(t), \dot{h}(t), t)dt + V(h(t_0), t_0) - q(t_n).h(t_n). \]

Thus, in the limit, \(V(k_s(t_0), t_0) - q(t_n).k_s(t_n) \geq V(x_0, t_0) - q(t_n)x_0. \)

This implies \(q(t_0) \in \partial V(k_{s_0}(t_0), t_0) \), since \(k_{s_0}(t_0) \in \text{int} X(t_0) \) by assumption.

Also, \(q(x) = p \in \partial V(k_{s_0}(x), x) \). Thus, condition (ii) of (7.9) is proved.

Now we can prove the following:

By (7.9), we have

\[\int_t^{t''} u(k_s(t), \dot{k}_s(t), t)dt + q(t'').(k_s(t'') - k_s(t')) \]

\[- \int_t^{t'} u(k_1(t), \dot{k}_1(t), t)dt - q(t').(k_1(t') - k_1(t)) \]

\[\geq (q(t'') - q(t')).(k_1(t'') - k_1(t)). \]

for all \(t', t'' \in [r, s] \) with \(t' \leq t'' \) and all \(i = 0, 1, \ldots, m \), where \(k_0, k_1, \ldots, k_m \) are functions which are assumed to exist in Proposition II.

Since functions \(k_0, k_1, \ldots, k_m \) satisfy condition (i) of Proposition II, we can easily prove the following facts:

(i) For all \(t', t'' \in [r, s] \) with \(t' \leq t'' \),

\[\max_{0 \leq i \leq m} (q(t'') - q(t')).(k_i(t'') - k_i(t)) \geq 0. \]
There exists $\lambda > 0$ such that $\|k_i(t) - k_s(t)\| \geq \lambda$ for all $t \in [r, s]$ and all $i = 0, 1, \ldots, m$.

(iii) There exists $\theta > 0$ such that if $\nu \in \mathbb{R}^m$ and $t \in [r, s]$, then $\nu(k_i(t) - k_s(t)) \geq \theta \|\nu\| \cdot \|k_i(t) - k_s(t)\|$ for some i.

Also, there exists $\beta > 0$ such that $\|q(t)\| \leq \beta$ for all $t \in [r, s]$, since function q is continuous. Therefore, we can derive the following inequality:

$$\frac{\beta}{\lambda^2} \int_t^s \|u(k_s(t), k_s(t), t)\| dt + \beta \|k_s(t) - k_s(t')\|$$

$$+ \frac{1}{\lambda^2} \sum_{i=0}^{m} \int_t^s \|u(k_i(t), k_i(t), t)\| dt + \beta \|k_i(t) - k_i(t')\|$$

$$\geq \frac{1}{\lambda^2} \max_{0 \leq t' \leq s} \left[\int_t^s \|u(k_s(t), k_s(t), t)\| dt + \beta \|k_s(t) - k_s(t')\| \right.$$

$$- \int_t^s \|u(k_i(t), k_i(t), t)\| dt - \beta \|k_i(t) - k_i(t')\|$$

$$\geq \frac{1}{\lambda^2} \max_{0 \leq t' \leq s} \left(\int_t^s (q(t') - q(t')) \cdot (k_s(t') - k_s(t')) \right.\left. - \int_t^s (q(t') - q(t')) \cdot (k_i(t') - k_i(t')) \right)$$

$$\geq \frac{1}{\lambda^2} \max\left\{0\right\} \|q(t') - q(t')\| \cdot \|k_s(t') - k_s(t')\|$$

$$\geq \frac{1}{\lambda^2} \min_{0 \leq t' \leq s} \theta \|q(t) - q(t')\| \cdot \|k_s(t') - k_s(t')\|$$

$$\geq \|q(t') - q(t')\|$$

for all $t', t'' \in [r, s]$ with $t' \leq t''$.

By the above inequality, since Lebesgue integrals are absolutely continuous and since functions k_s, k_0, k_1, \ldots, k_m are absolutely continuous, we can easily show that function q is absolutely continuous.

In order to complete the proof of Proposition II, by virtue of (7.9) and (7.10), we have only to prove the following:

$$- (q(t), q(t)) \in \omega(u(k_s(t), k_s(t), t))$$

for almost every $t \in [r, s]$.

First we should note (see, for example, Natanson [1955, p.257]) that for almost every $t_0 \in [r, s]$

$$\lim_{t \to t_0} \frac{1}{\theta} \int_{t_0}^t u(k_s(t), k_s(t), t) dt = u(k_s(t_0), k_s(t_0), t_0),$$

$$\lim_{t \to t_0} \frac{q(t) - q(t_0)}{t - t_0} = \dot{q}(t_0),$$

$$\lim_{t \to t_0} \frac{k_s(t) - k_s(t_0)}{t - t_0} = \dot{k}_s(t_0).$$

For such a point $t_0 \in [r, s]$, suppose that $(x_0, y_0) \in Y(t_0)$ and $x_0 \in \text{int} X(t_0)$. Then, by Lemma I, there exist a number s' with $t_0 < s' < s$ and an absolutely continuous function $h : [t_0, s'] \to \mathbb{R}^m$ satisfying the following conditions:

$$(h(t), h(t)) \in Y(t)$$

for almost every $t \in [t_0, s']$.

h is a continuous function.

$h(t_0) = x_0$ and $h(t_0) = y_0$.

Since functions u and h are continuous, we have

$$\lim_{t \to t_0} \frac{1}{\theta} \int_{t_0}^t u(h(t), h(t), t) dt = u(h(t_0), h(t_0), t_0),$$

$$= u(x_0, y_0, t_0)$$

and

$$\lim_{t \to t_0} \frac{h(t) - h(t_0)}{t - t_0} = \dot{h}(t_0) = y_0.$$
8. Proof of Theorem II

First we should note (see, for example, Natanson [1955, p.229])
that for almost every \(t_0 \in [0, \infty) \)
\[
\lim_{\theta \to 0^+} \frac{1}{\theta} \int_{t_0}^{t_0+\theta} u(k_* (t), \dot{k}_* (t), t) dt = u(k_* (t_0), \dot{k}_* (t_0), t_0)
\]
and
\[
\lim_{\theta \to 0^+} \frac{k_* (t_0+\theta) - k_* (t_0)}{\theta} = \dot{k}_* (t_0).
\]

Let \(t_0 \) be such a point and \((k_* (t_0), y_0) \in Y(t_0)\). Since \(k_* (t_0) \in \text{int}(Y(t_0)), \)
by Lemma I there exist a number \(s > t_0 \) and an absolutely continuous function
\(h : [t_0, s] \to \mathbb{R}^n \) with the following properties:
\((h(t), \dot{h}(t)) \in Y(t) \) for almost every \(t \in [t_0, s] \).
\(h \) is a continuous function.
\(h(t_0) = k_* (t_0) \) and \(\dot{h}(t_0) = y_0 \).

Since functions \(h \) and \(u \) are continuous, we have
\[
\lim_{\theta \to 0^+} \frac{1}{\theta} \int_{t_0}^{t_0+\theta} u(h(t), \dot{h}(t), t) dt = u(h(t_0), \dot{h}(t_0), t_0)
\]
and
\[
\lim_{\theta \to 0^+} \frac{h(t_0+\theta) - h(t_0)}{\theta} = \dot{h}(t_0) = y_0.
\]

Furthermore, since \(k_* \) is also an optimal path from time \(t_0 \) by Theorem I, for any \(p_0 \in \partial u(k_* (t_0), t_0) \) there exists an absolutely continuous function \(q_0 : [t_0, \infty) \to \mathbb{R}^n \) such that
\(q_0 (t_0) = p_0 \) and
\(-q_0 (t), q_0 (t) \in \partial u(k_* (t), \dot{k}_* (t), t) \) for almost every \(t \in [t_0, \infty) \).
Therefore, for almost every $t \in [t_0, s]$
\[u(k_s(t), \dot{k}_s(t), t) + q_0(t) \dot{k}_s(t) + q_o(t), \dot{k}_s(t) \]
\[\geq u(h(t), \dot{h}(t), t) + q_0(t) h(t) + q_o(t), \dot{h}(t) . \]

By integrating this inequality, for all $\theta > 0$ with $\theta \leq s - t_0$ we have
\[\int_{t_0}^{t_0 + \theta} u(k_s(t), \dot{k}_s(t), t)dt - q_0(t_0), k_s(t_0) + q_0(t_0 + \theta), k_s(t_0 + \theta) \]
\[\geq \int_{t_0}^{t_0 + \theta} u(h(t), \dot{h}(t), t)dt - q_0(t_0), h(t_0) + q_0(t_0 + \theta), h(t_0 + \theta) . \]
i.e.,
\[\frac{1}{\theta} \int_{t_0}^{t_0 + \theta} u(k_s(t), \dot{k}_s(t), t)dt + q_0(t_0 + \theta), k_s(t_0 + \theta) - k_s(t_0) \]
\[\geq \frac{1}{\theta} \int_{t_0}^{t_0 + \theta} u(h(t), \dot{h}(t), t)dt + q_0(t_0 + \theta), h(t_0 + \theta) - h(t_0) . \]

Thus, in the limit, we have
\[u(k_s(t_0), \dot{k}_s(t_0), t_0) + p_0, k_s(t_0) \geq u(k_s(t_0), y_0, t_0) + p_0, y_0 . \]

Namely, $-p_0 \in \partial u(k_s(t_0), \dot{k}_s(t_0), t_0)$. Hence, we have
\[\partial u(k_s(t_0), t_0) = -\partial u(k_s(t_0), \dot{k}_s(t_0), t_0) . \]

This completes the proof of Theorem II.

References

