Satisfied by the kinds of mortality income tax schedules which are generally presented in clouds, further, the incidence of consumption and general profit from labor or potential, rather than steady income, are constructed or constructed-free solutions or combinations of some more.

Thereby, it would appear to make appropriate a lower and possibly smaller
number of total income in several.

decreasing, convex functions of income, with marginal rates not
over the available schedule (to a subject of the class or continuous, non-
of alternative schedules (in [2]) did illustrate construct the class.

However, the antipode in (3) did severely constrain the class.

Thus these results in the result is a general one.

Those parameters in the optimal schedule depend on the shape data, so in the practical form of the schedule there function (thought of course the

Income property does not depend on the distribution of ability or

the distribution of income is taken at the same marginal rate. The

schedules maximized with a linear decrease in the optimal

income tax from the point of view of an agent interested in

optimal income tax from the point of view of an agent interested in

geometric results and equivalent there (Proposition 7.9) that the

rates of working in an unskilled or skeleton sector of the economy, one

rates by working in an unskilled "skilled" sector of the economy. One

the context of a static model in which involuntary responses to high tax

and collective preferences over alternative income tax schedules in

an earlier paper [3], we examined the nature of involuntary

March 1974
Gerald H. Kramer and James H. Suyder

Literality of the Optimal Income Tax: A Generalization

Society, preferred to any nonlinear lower extreme continuous tax

tax rates (region). In fact, we prove that a lower income tax is

decreasing marginal income tax rate at well as convex (more than

schedules, more importantly an income schedule to have convex

functions of income. Here we relax the restrictions on tax

among the set of tax schedules that are continuous, non-decreasing.

Here we can distinguish the social optimality of a lower income tax

rates of working in an named, "unskilled" sector of the economy.

the context of a static model in which involuntary responses to high tax

and collective preferences over alternative income tax schedules in

an earlier paper [3], we examined the nature of involuntary

Abstract

Gerald H. Kramer and James H. Suyder

Literality of the Optimal Income Tax: A Generalization
functions of income or whatever. After a certain interest schedule, a section—shown that any non-negative schedule is dominated by a section—and then the interest schedule is proved in the theorem of the paper of the multiplier, the set of the multiplier, a revenue target (other than lower that can-constitute). Otherwise relax another assumption essentially or restrictions on the class of admissible schedules.

In the present paper, however, we shall show that the

assumption.

interest rate result might well be an artifact of the convexity

interest rate might be an interest rate rather than boundary members. Thus the

lower members of the convex region, or convex segments, any optimal

interest (or economic) within the class of convex schedules, any optimal

strategic convex schedule can be dominated by certain less-convex (or

the argument (Proposition 3.4) to prove the theorem that

of the interest rate result somewhat supported. The key part of

convex argument (e.g., for example, [1]). However, from a technical

schedules that is directly varied with income in a compensated, non-

tax burden, particularly when transfers or other benefits are

seen in practice, this is not true of the effective income of the

sector. After that any non-negative schedule is dominated by a

section—and shown that any non-negative schedule is dominated by a

section—and then the interest schedule is proved in the theorem of

the paper of the multiplier, the set of the multiplier, a revenue target

(0.4)<[1.0].

The total amount of labor available to the economy

utility, f quadrato, and the support of an interest integral (

[0.4]<[1.0]).

is the number of interest points who supply or lower

vandia) <[n], the number of interest periods who supply or lower

the same number, the production identity, income econony.

But this amount points to the production identity, income economy.

Each input-output applies a fixed amount of labor to the

1. (N - 0) <[1.0] for all b > [0.4].

Decrease the total function of the total labor applying to that sector. Let

with decrease the total function of the total labor applying to that sector. Let

we have the case where two sectors, M
different return in the market sector. The relative return (of

unemployed return in the market sector. The relative return (of

return of compensation unit in the market sector. Or a lower but

compensation, or after-tax income. A unit of labor pays a (ecurity

their work effort between these two sectors so as to maximize

sector, and in the market, "market" sector, worker-compensation allocate

sector, and in the last, "market" sector, worker-compensation allocate

sector, and in the last, "market" sector, worker-compensation allocate

We assume a stable one-good economy with a total "market"
Given a tax schedule, and where \(g \) is an integral of \((T(x), x)\) over any set with \(x \) the smallest such integral (by lower-semi-continuity),

\[[u, v) = (m) (n) \]
Since equity is the same, determination and raise the same revenue, their welfare implications are equivalent. Solutions induce the same after-tax income.

\[
J_x = J_y \quad (6)
\]

and

\[
J_m = J_a \quad (7)
\]

Definition: The conclusions I, J are equivalent if and only if

\[
J_x - J_\lambda = J_y \quad (7)
\]

Total after-tax income, the total tax revenue collected is then

\[
(\lambda - \mu)J_x = J_\lambda \quad (8)
\]

If we denote

\[
\int_0^\lambda 0.5x + \frac{1}{2}(\lambda_x - 1) = (\lambda x - \mu + \lambda_\mu + (\lambda, x)] = J_x \quad (5)
\]

Throughout, thus aggregate before-tax income is

\[
\int_0^\lambda 0.5x + \frac{1}{2}(\lambda_x - 1) = (\mu x - \mu + \lambda_\mu + (\lambda, x)] = J_x \quad (5)
\]

Thus aggregate before-tax income is equivalent to the definition of the utility of the indirect taxes. Here, and heaven, we calculate

\[
\int_0^\lambda 0.5x + \frac{1}{2}(\lambda_x - 1) = (\mu x - \mu + \lambda_\mu + (\lambda, x)] = J_x \quad (5)
\]

Since aggregate before tax increased, however, the aggregate are

\[
\int_0^\lambda 0.5x + \frac{1}{2}(\lambda_x - 1) = (\mu x - \mu + \lambda_\mu + (\lambda, x)] = J_x \quad (5)
\]

The aggregate labor supply is the unallocated sector is

\[
\int_0^\lambda 0.5x + \frac{1}{2}(\lambda_x - 1) = (\mu x - \mu + \lambda_\mu + (\lambda, x)] = J_x \quad (5)
\]

Or

\[
(\mu x - \mu + \lambda_\mu + (\lambda, x)] = J_x \quad (5)
\]

Thus the distribution of \(x \) with respect to \(x \) is

\[
(\mu x - \mu + \lambda_\mu + (\lambda, x)] = J_x \quad (5)
\]

For some work, we have

\[
(\mu x - \mu + \lambda_\mu + (\lambda, x)] = J_x \quad (5)
\]
Lemma. Suppose \(X \subseteq \mathcal{I} \). For any \(x \in X \), if \((x, (x^*)') \notin \mathcal{I} \), then \(x \in \mathcal{I} \).

\[(X, (x^*)') \in \mathcal{I} \text{ if and only if } x \in X \text{ for all } x \in X. \]
For every continuous, strictly increasing, strictly concave function \(f(x) \), if
\[
\int f(u) \, du < \int f(u) \, du
\]
then there exists an \(u \), and the feasible schedule of the one which maximizes this over the set of
\[
\int f(u) \, du
\]
that is, the optimal utility of the schedule is equal to the social utility of the same schedule under the assumption of an indistinguishable set of decision-makers, so that \(f(X) \) is the same as \(f(x) \) for \(x \) in the same order.

In view of this, we may consider the automatic attention to the construction schedule, which every schedule is equivalent to the union of the construction schedule above that every schedule is equivalent to a unique schedule.

We next show that both schedules induce the same after-tax

\(\Box \)
bounded, \(\int_{\Omega} |u(x)| \, dx \) has a supremum on \(\Omega \), moreover, \(\Omega \) is a compact subset of the parameter space \(\Omega \). Since \(\Omega \) is bounded, it is compact, and hence the

3. (a) Proposition 1. From the theorem, the set \(\Omega \) is closed.

3. (b) Proposition 2. From the theorem, the set \(\Omega \) is closed.

4. (a) Proposition 3. From the theorem, the set \(\Omega \) is closed.

Moreover, there exist \(\alpha \), \(\beta \) such that

\[\int_{\Omega} \alpha(x) \, dx = \beta, \]

where \(\alpha(x) \) and \(\beta \) are defined on \(\Omega \). Then, let \(\alpha(x) \) be the supremum of \(\Omega \), and let \(\beta \) be the infimum of \(\Omega \). Hence, \(\Omega \) is closed.

\[\beta = \int_{\Omega} \alpha(x) \, dx, \]

where \(\alpha(x) \) and \(\beta \) are defined on \(\Omega \). Then, let \(\alpha(x) \) be the supremum of \(\Omega \), and let \(\beta \) be the infimum of \(\Omega \). Hence, \(\Omega \) is closed.

\[\lim_{n \to \infty} \int_{\Omega} \alpha(x) \, dx = \beta, \]

where \(\alpha(x) \) and \(\beta \) are defined on \(\Omega \). Then, let \(\alpha(x) \) be the supremum of \(\Omega \), and let \(\beta \) be the infimum of \(\Omega \). Hence, \(\Omega \) is closed.

\[\lim_{n \to \infty} \int_{\Omega} \alpha(x) \, dx = \beta, \]

where \(\alpha(x) \) and \(\beta \) are defined on \(\Omega \). Then, let \(\alpha(x) \) be the supremum of \(\Omega \), and let \(\beta \) be the infimum of \(\Omega \). Hence, \(\Omega \) is closed.

\[\lim_{n \to \infty} \int_{\Omega} \alpha(x) \, dx = \beta, \]

where \(\alpha(x) \) and \(\beta \) are defined on \(\Omega \). Then, let \(\alpha(x) \) be the supremum of \(\Omega \), and let \(\beta \) be the infimum of \(\Omega \). Hence, \(\Omega \) is closed.

\[\lim_{n \to \infty} \int_{\Omega} \alpha(x) \, dx = \beta, \]

where \(\alpha(x) \) and \(\beta \) are defined on \(\Omega \). Then, let \(\alpha(x) \) be the supremum of \(\Omega \), and let \(\beta \) be the infimum of \(\Omega \). Hence, \(\Omega \) is closed.

\[\lim_{n \to \infty} \int_{\Omega} \alpha(x) \, dx = \beta, \]

where \(\alpha(x) \) and \(\beta \) are defined on \(\Omega \). Then, let \(\alpha(x) \) be the supremum of \(\Omega \), and let \(\beta \) be the infimum of \(\Omega \). Hence, \(\Omega \) is closed.

\[\lim_{n \to \infty} \int_{\Omega} \alpha(x) \, dx = \beta, \]

where \(\alpha(x) \) and \(\beta \) are defined on \(\Omega \). Then, let \(\alpha(x) \) be the supremum of \(\Omega \), and let \(\beta \) be the infimum of \(\Omega \). Hence, \(\Omega \) is closed.

\[\lim_{n \to \infty} \int_{\Omega} \alpha(x) \, dx = \beta, \]

where \(\alpha(x) \) and \(\beta \) are defined on \(\Omega \). Then, let \(\alpha(x) \) be the supremum of \(\Omega \), and let \(\beta \) be the infimum of \(\Omega \). Hence, \(\Omega \) is closed.

\[\lim_{n \to \infty} \int_{\Omega} \alpha(x) \, dx = \beta, \]

where \(\alpha(x) \) and \(\beta \) are defined on \(\Omega \). Then, let \(\alpha(x) \) be the supremum of \(\Omega \), and let \(\beta \) be the infimum of \(\Omega \). Hence, \(\Omega \) is closed.

\[\lim_{n \to \infty} \int_{\Omega} \alpha(x) \, dx = \beta, \]

where \(\alpha(x) \) and \(\beta \) are defined on \(\Omega \). Then, let \(\alpha(x) \) be the supremum of \(\Omega \), and let \(\beta \) be the infimum of \(\Omega \). Hence, \(\Omega \) is closed.

\[\lim_{n \to \infty} \int_{\Omega} \alpha(x) \, dx = \beta, \]

where \(\alpha(x) \) and \(\beta \) are defined on \(\Omega \). Then, let \(\alpha(x) \) be the supremum of \(\Omega \), and let \(\beta \) be the infimum of \(\Omega \). Hence, \(\Omega \) is closed.

\[\lim_{n \to \infty} \int_{\Omega} \alpha(x) \, dx = \beta, \]

where \(\alpha(x) \) and \(\beta \) are defined on \(\Omega \). Then, let \(\alpha(x) \) be the supremum of \(\Omega \), and let \(\beta \) be the infimum of \(\Omega \). Hence, \(\Omega \) is closed.

\[\lim_{n \to \infty} \int_{\Omega} \alpha(x) \, dx = \beta, \]

where \(\alpha(x) \) and \(\beta \) are defined on \(\Omega \). Then, let \(\alpha(x) \) be the supremum of \(\Omega \), and let \(\beta \) be the infimum of \(\Omega \). Hence, \(\Omega \) is closed.

\[\lim_{n \to \infty} \int_{\Omega} \alpha(x) \, dx = \beta, \]

where \(\alpha(x) \) and \(\beta \) are defined on \(\Omega \). Then, let \(\alpha(x) \) be the supremum of \(\Omega \), and let \(\beta \) be the infimum of \(\Omega \). Hence, \(\Omega \) is closed.
nonnegative, and we desired.

\[x(x, \lambda - 1) = \left(\frac{x}{\lambda} \right) \leq x(x, \lambda - 1) \leq (x) \lambda \]

< \left(\frac{x}{\lambda} \right) \leq \left(\frac{x}{\lambda} \right) \leq x(x, \lambda - 1) \leq (x) \lambda

so \, x(x, \lambda - 1) - \left(\frac{x}{\lambda} \right) \leq x(x, \lambda - 1) - (x) \lambda

< \frac{x}{\lambda} - x, \lambda \leq x - \left(\frac{x}{\lambda} \right) \leq (x) \lambda

so \, x, \lambda \leq x - \left(\frac{x}{\lambda} \right) \leq (x) \lambda

where \, x \leq x, \lambda \leq x, \lambda and \, x \leq \left(\frac{x}{\lambda} \right) \leq \left(\frac{x}{\lambda} \right) \leq (x) \lambda

We show that \(x(x, \lambda - 1) - (x) \lambda < (x) \lambda \).

Definition. For any \(\lambda, \mu \), \(\lambda \mu \) by definition, for notational

\[\text{process. For any } \lambda, \mu. \]

\[(\lambda, \mu)^{\lambda} \leq (\lambda, \mu)^{\lambda} \]

\[(\lambda, \mu)^{\lambda} \leq (\lambda, \mu)^{\lambda} \]

Lemma. For each \(\lambda \in [0, 1] \), \(\lambda \bullet \mu = (\lambda \bullet \mu)^{\lambda} \)

and \((\lambda \bullet \mu)^{\lambda} \leq (\lambda \bullet \mu)^{\lambda} \leq (\lambda \bullet \mu)^{\lambda} \)

equation. In that follows, \(\lambda \bullet \mu = (\lambda \bullet \mu)^{\lambda} \)

Here we prove the existence and uniqueness of a market.

APPENDIX
To see that $\frac{1}{x}$ is left-hand continuous, let $x \in (0,1)$ follow directly from lemma 1.

Proof. For all $x \in (0,1)$ and $x \in (\frac{1}{x},\frac{1}{x})$, let $x \to 0$, $x \to \frac{1}{x}$. Then, $x < \frac{1}{x}$, let $x < x$. If $x < x$, $x = \frac{1}{x}$.

Lemma: $x \to \frac{1}{x}$ is left-hand continuous and $x \to \frac{1}{x}$ is right-hand continuous.

Proof. Let $x \to x$, so $x > x$, so $x = x$. If $x > x$, $x = \frac{1}{x}$.

We now show that $\frac{1}{x}$ is right-hand continuous. The proof...
2. There are at least two differentiable functions.

3. The function $u(x) = x^n - 1$ for $n > 1$. So the would become a removable singularity. In the μ-iteration, composition μ and λ are perfect substitutes in composition.

$$u(x) = x^n - 1$$

where λ is after-tax composition of income and μ is the tax-

$$f'(x) = (f')u(x)$$

4. Strictly concave, strictly concave transformation of g. Any effect by f, the impact utility function in our model is (any)

the utility function. If we denote the same, the abstract for work is the same. The abstract for work effort. If we think of unextracted work effort as

In the standard optimal transaction framework--9.6. Theorem--
REFERENCES

