November 1974

SOCIAL SCIENCE WORKING PAPER 67

Mohamed El-Hodiri and James Gurtler

ON COMPARATIVE DYNAMICS

PASADENA, CALIFORNIA 91125

CALIFORNIA INSTITUTE OF TECHNOLOGY
DIVISION OF THE HUMANITIES AND SOCIAL SCIENCES
The comparative dynamics reveals that the economic growth paths, by comparative dynamics, we mean the
theoretical method of controlling comparative statics reveals

decision variables due to a change in the coefficient of determination of the direction of change in the optimal path of
the theoretical method of comparative statics reveals

If an accelerator has been used in the economic growth literature

discusses the much simpler problem of comparative dynamics.

By putting the problem of path stability to the proper perspective, the role of the accelerator, the role of the path

However, we would be doing the economic material

The role of the accelerator, the role of the path

Should there be a single dimensional space, theoretically, it can control

Held is that of differential equation derivation on a space of functions

The, applicable mathematical

The theoretical method of comparative dynamics reveals that the economic growth paths, by comparative dynamics, we mean the
These formulas may be used to derive higher Generalized law of

oder if, and only if,

Applying formula 3.

Now suppose f and g are continuous in x for any fixed y. Then,

and where

and where

Next necessary conditions:

...
Suppose the system is given by

\[\begin{align*}
I + L & = 0 \\
\dot{y} & = -y + z + \theta
\end{align*} \]

Let \([l, \ldots, 0] = 0\) in the control vector, where \([l, \ldots, 0] = n\)-vector and where

The optimal criterion is to find the case where the criterion function is

obtained.

2. Comparative Dynamics. Discrete Time.

2.1. Extending to a More General Formulation.

There are many applications of these extensions to economic

The solution would involve for this case, the effect of a change in

\[\begin{align*}
q & \geq q_i \\
\dot{q} & \geq q_i
\end{align*} \]

subject to the constraints of the problem. On the other hand, if the constraints are

dependent of the parameters, relation 6 becomes:
be a certain "optimization" to be associated at the end of the plane, expressed

considerate, precautionary and, by the function: \(f(C) \), and suppose

where \(k \) is constant. Moreover, what is \(\theta \) is still, suppose the

\[0 < \theta < 1, \quad C_1^2 - 1 - 2 \theta + 1 \alpha + 3 \theta = 1 - 1 \theta + 1 \alpha \]

Let be the velocity at time \(t \). Then we have:

\[\text{velocity vector at time } t \] = \(\text{velocity of plane atmosphere at time } t \) \text{ and let } W \text{ denote the}

construction at time \(t \) and let \(C = C(t) \). Then \(\alpha \) denote the

where phase the construction over a period of \(T \) seconds. Let \(C \) denote

as our first organizing variable, we take the problem of a controller

for the 13 and 14 follow directly from (5) and (6) of the last section.

\[0 < \alpha < 1, \quad \lambda = \lambda_0 + 1 \alpha \quad \text{and} \quad \lambda_1 = \lambda_1 + 1 \alpha \]

\[\theta = \theta_0 - \alpha \theta_1 - \lambda_1 \lambda_0 - \alpha \theta_1 - 2 \theta_1 - 1 \theta \]

\[\theta = \theta_0 - \alpha \theta_1 - \lambda_1 \lambda_0 - \alpha \theta_1 - 2 \theta_1 - 1 \theta \]

We cannot obtain an expression for \(\theta \) in terms of \(C \) and \(W \) because

These conditions are the lower order necessary conditions for the sequel.

\[\alpha = 0; \quad \alpha = 0 \]

\[\alpha = 0; \quad \alpha = 0 \]

\[\alpha = 0; \quad \alpha = 0 \]

We may derive the functions \(\delta \) and \(\alpha \) as follows.

\[\alpha = 1 \]

\[\alpha = 1 \]

\[\alpha = 1 \]

In the particular case where
We consider the effect of a compensatory change in \(p' \) assuming the marginal rate of substitution.

In particular, we have the following expression of the monopolist's optimal pricing:

\[
\frac{1}{1 + p' I_1} \frac{1}{1 + p' I_2} \frac{1}{1 + p' I_3} = \frac{1}{p' I_0}
\]

where \(I_0 \) is the initial income.

This expression is well known and is typically derived only for utility functions in the form of \(u(x) \), i.e., \(u(x) = x \). The expression in the form of \(I_0 \) is not applicable directly to all utility functions.

For utility functions in the form of \(I_0 \), this equation is well known and is specifically derived only when \(I_0 \) is the initial income. The exact order of necessary conditions may be derived by non-compensatory treatment on wealth where one believes in decay of any time.

Non-compensatory treatment on wealth where one believes in decay of any time

\[
\text{marginal rate of substitution,}
\]

\[
1 = \frac{1}{1 + p' I_1} \frac{1}{1 + p' I_2} \frac{1}{1 + p' I_3} = \frac{1}{p' I_0}
\]

we have:

\[
I_0 = \frac{1}{1 + p' I_1} \frac{1}{1 + p' I_2} \frac{1}{1 + p' I_3} = \frac{1}{p' I_0}
\]

Assuming that 0 and \(I_0 \) are both positive and \(I_0 < 0 < I_0 \)

\[
0 = \frac{1}{1 + p' I_1} \frac{1}{1 + p' I_2} \frac{1}{1 + p' I_3} = \frac{1}{p' I_0}
\]

we have:

\[
I_0 = \frac{1}{1 + p' I_1} \frac{1}{1 + p' I_2} \frac{1}{1 + p' I_3} = \frac{1}{p' I_0}
\]

To solve:

\[
I_0 = \frac{1}{1 + p' I_1} \frac{1}{1 + p' I_2} \frac{1}{1 + p' I_3} = \frac{1}{p' I_0}
\]

\[
I_0 = \frac{1}{1 + p' I_1} \frac{1}{1 + p' I_2} \frac{1}{1 + p' I_3} = \frac{1}{p' I_0}
\]

The exact order of necessary conditions may be derived by non-compensatory treatment on wealth where one believes in decay of any time.
The first order necessary conditions for this problem are:

\[0 \leq (1 + \lambda_1) q \leq 0, \quad 0 \leq (1 + \lambda_2) q \leq 0, \quad \lambda_1 \geq 0, \quad \lambda_2 \geq 0, \quad q \neq 0, \quad \lambda_1, \lambda_2 \geq 0. \]

The optimal solution is a point where the gradient of the objective function is zero. The Lagrange multipliers \(\lambda_1 \) and \(\lambda_2 \) are used to ensure that the constraints are satisfied. If the constraints are satisfied, we have \(\lambda_1 = \lambda_2 = 0 \).

Again, utilizing (11), we have:

\[0 \leq (1 + \lambda_1) q \leq 0, \quad 0 \leq (1 + \lambda_2) q \leq 0, \quad \lambda_1 \geq 0, \quad \lambda_2 \geq 0, \quad q \neq 0, \quad \lambda_1, \lambda_2 \geq 0. \]
correspond to the equation for the expected value of the objective function under the given constraints. This is because the problem is a linear program, and the solution is given by the optimal solution to the dual problem. The dual problem, on the other hand, is a linear program that is easier to solve than the original problem. The solution to the dual problem is the optimal solution to the original problem.

In this section, we use a technique called the shadow price to construct a matrix that is in the form of a system of equations. The matrix is given by:

\[
\begin{bmatrix}
1 & 1 & \cdots & 1 \\
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{bmatrix}
\]

where the elements are given by:

\[
\begin{align*}
1 &= 1 - \frac{\partial f}{\partial x_j} \\
0 &= \frac{\partial f}{\partial x_j} \\
0 &= \frac{\partial f}{\partial x_j} \\
\vdots &= \vdots \\
0 &= \frac{\partial f}{\partial x_j}
\end{align*}
\]

These constraints have the usual symbolic interpretation when the expressions

\[
0 = \frac{\partial f}{\partial x_j} + \frac{\partial f}{\partial x_j} + \cdots + \frac{\partial f}{\partial x_j}
\]
\[
\begin{align*}
I_x \frac{d}{dx} + O_x = 0
\end{align*}
\]
We also get from (39) and (28) that

\[Q \geq \text{tr}\left[(\mathbf{I} - \mathbf{1}) \mathbf{n}^{\gamma} + (\mathbf{1} - \mathbf{1}) \mathbf{n}^{\gamma} + (\mathbf{I} - \mathbf{1}) \mathbf{n}^{\gamma} + (\mathbf{I} - \mathbf{1}) \mathbf{n}^{\gamma} \right]_{12} \]

and

\[\sum_{i=1}^{\gamma} (\mathbf{I} - \mathbf{1}) \mathbf{n}^{\gamma} + (\mathbf{1} - \mathbf{1}) \mathbf{n}^{\gamma} + (\mathbf{I} - \mathbf{1}) \mathbf{n}^{\gamma} + (\mathbf{I} - \mathbf{1}) \mathbf{n}^{\gamma} \]

(43)

Lastly, we have some further results, namely that we may also assume that \(Q > 0 \), which is due to the non-zero nature of the inequalities without assuming (39) and (28).

\[\sum_{i=1}^{\gamma} (\mathbf{1} - \mathbf{1}) \mathbf{n}^{\gamma} + (\mathbf{1} - \mathbf{1}) \mathbf{n}^{\gamma} + (\mathbf{1} - \mathbf{1}) \mathbf{n}^{\gamma} + (\mathbf{1} - \mathbf{1}) \mathbf{n}^{\gamma} \]

(44)

Furthermore, we have

\[\sum_{i=1}^{\gamma} (\mathbf{1} - \mathbf{1}) \mathbf{n}^{\gamma} + (\mathbf{1} - \mathbf{1}) \mathbf{n}^{\gamma} + (\mathbf{1} - \mathbf{1}) \mathbf{n}^{\gamma} + (\mathbf{1} - \mathbf{1}) \mathbf{n}^{\gamma} \]

(45)

We have then

\[\sum_{i=1}^{\gamma} (\mathbf{1} - \mathbf{1}) \mathbf{n}^{\gamma} + (\mathbf{1} - \mathbf{1}) \mathbf{n}^{\gamma} + (\mathbf{1} - \mathbf{1}) \mathbf{n}^{\gamma} + (\mathbf{1} - \mathbf{1}) \mathbf{n}^{\gamma} \]

(46)

Since and are concave in \(z \), we have

\[\sum_{i=1}^{\gamma} (\mathbf{1} - \mathbf{1}) \mathbf{n}^{\gamma} + (\mathbf{1} - \mathbf{1}) \mathbf{n}^{\gamma} + (\mathbf{1} - \mathbf{1}) \mathbf{n}^{\gamma} + (\mathbf{1} - \mathbf{1}) \mathbf{n}^{\gamma} \]

(47)

With these facts, we have

\[\sum_{i=1}^{\gamma} (\mathbf{1} - \mathbf{1}) \mathbf{n}^{\gamma} + (\mathbf{1} - \mathbf{1}) \mathbf{n}^{\gamma} + (\mathbf{1} - \mathbf{1}) \mathbf{n}^{\gamma} + (\mathbf{1} - \mathbf{1}) \mathbf{n}^{\gamma} \]
Let the consumption equation be given by

Next we discuss a simple one sector model of optimal growth. The solution of our model of consumption function and because of its quantitative form theorem of the form of the classical utility function may be used to derive the properties of the utility function. We consider the neoclassical economy of the growth induced demand and

\[0 \geq \rho \left[\delta \rho, \delta \rho + \gamma \rho - \delta \rho \right] \frac{1}{1-\delta} \]

Since \(\delta > 0 \),

\[0 \geq \rho \left[\delta \rho, \delta \rho + \gamma \rho - \delta \rho \right] \frac{1}{1-\delta} \]

This, since \(\delta > 0 \),

\[1 \geq \frac{\rho \delta \rho, \delta \rho + \gamma \rho - \delta \rho}{1-\delta} \]

We may use the same utility function, \(U(\cdot, \cdot) \), where the consumption means the consumer

constant expenditure in \(\phi \), the prices of the goods \(i_t \). Now suppose there is a

\[f'(x) = \frac{f(x)}{x} = \frac{f(x)}{x} \]

\[\frac{f(x)}{x} \]

interest. If we consider the goods \(i_t \) at the same time, we have:

The time path of consumption is directly related to the difference

\[\delta \rho - \gamma \rho \]

between the personal rate of time preference \(\delta \rho \) and the market rate of

\[\delta \rho \]

89 (47)

89 (46)

89 (45)

89 (44)

89 (43)

89 (42)

89 (41)

89 (40)

89 (39)

89 (38)

89 (37)

89 (36)

89 (35)

89 (34)

89 (33)

89 (32)

89 (31)

89 (30)

89 (29)

89 (28)

89 (27)

89 (26)

89 (25)

89 (24)

89 (23)

89 (22)

89 (21)

89 (20)

89 (19)

89 (18)

89 (17)

89 (16)

89 (15)

89 (14)

89 (13)

89 (12)

89 (11)

89 (10)

89 (9)

89 (8)

89 (7)

89 (6)

89 (5)

89 (4)

89 (3)

89 (2)

89 (1)

89

88
and assuming j is constant, we have

\[\frac{J_Y}{J_0} \left(\frac{1}{(\frac{1}{\omega})_1} - \frac{1}{(\frac{1}{\omega})_2} \right) \]

Substituting for \(\omega \) from the first order conditions we have:

\[\frac{J_Y}{J_0} \left(\frac{1}{(\frac{1}{\omega})_1} - \frac{1}{(\frac{1}{\omega})_2} \right) \]

But by the first order conditions the measure:

\[0 \geq \frac{J_Y}{J_0} \left(\frac{1}{(\frac{1}{\omega})_1} - \frac{1}{(\frac{1}{\omega})_2} \right) \]

Finally, if the change is then the effect is given by:

\[\frac{dJ_Y}{d\omega} \left(\frac{1}{(\frac{1}{\omega})_1} - \frac{1}{(\frac{1}{\omega})_2} \right) \]

The change in the effect is given by:

\[\frac{dJ_Y}{d\omega} \left(\frac{1}{(\frac{1}{\omega})_1} - \frac{1}{(\frac{1}{\omega})_2} \right) \]

Substituting to (15) and (16):

If the change in the effect is given, we have:

\[\frac{dJ_Y}{d\omega} \left(\frac{1}{(\frac{1}{\omega})_1} - \frac{1}{(\frac{1}{\omega})_2} \right) \]

The economy next to a growth in the form of value of the marginal product of labor, we have:

\[\frac{dJ_Y}{d\omega} \left(\frac{1}{(\frac{1}{\omega})_1} - \frac{1}{(\frac{1}{\omega})_2} \right) \]

Since the excess shadow price of capital, we have:

\[\frac{dJ_Y}{d\omega} \left(\frac{1}{(\frac{1}{\omega})_1} - \frac{1}{(\frac{1}{\omega})_2} \right) \]

The economy next to a growth in the form of value of the marginal product of labor, we have:

\[\frac{dJ_Y}{d\omega} \left(\frac{1}{(\frac{1}{\omega})_1} - \frac{1}{(\frac{1}{\omega})_2} \right) \]

Since the excess shadow price of capital, we have:

\[\frac{dJ_Y}{d\omega} \left(\frac{1}{(\frac{1}{\omega})_1} - \frac{1}{(\frac{1}{\omega})_2} \right) \]
References