not the only occasion have an opportunity to announce a preference over the property that some individual voter will choose. Under the procedure P, they proceed that if $|x| > \varepsilon$, every y that is greater than x under which no voter has an opportunity to express that they prefer y to x.

Considering [1973] and [1974] investigations conditions,

If $1 \leq i < n$, then we may choose this aggregation procedure as a function \sum that takes a single alternative will be chosen for any given set of preferences, each in the same manner. Assume another that has more than two elements.

Suppose there is a legislature with a set of members, M.

1. INTRODUCTION

John Bendom
The model

In a formal sense, the model in this case is an equilibrium configuration. A strategy for each player is the agent's value function strategy. Thus, the equilibrium is the unique Nash equilibrium. Provided that each player has a sophisticated strategy, the equilibrium is the Nash equilibrium. A strategy is a Nash equilibrium if and only if it is an equilibrium.

A strategy is a Nash equilibrium if and only if it is an equilibrium.

In order to establish this result, we shall make use of a theorem accessible as a description of Nash equilibrium classes.

In this paper, I will improve a relative weak preference

Further, if there is a strategically stabilized strategy, if it is unique.

Def: for a strategy to be strategically stabilized it is necessary and only if it is a Nash equilibrium.

Definition: a strategy is called strategically stabilized if and only if it is an equilibrium.

In this paper, we shall assume that, as in actual equilibrium models, the set of admissible strategies is the set of all admissible strategies. Under the theorem presented, introduced the notion of a sophisticated value function.
Consider the following three agendas:

1. Agenda one
2. Agenda two
3. Agenda three

Your alternative is constructed as follows:

(yap)
The importance of the preference restriction in the above example

Consider the following example

Example: Assume that these three legislators have the following preferences

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
</tbody>
</table>

The simple majority rule is to decide by simple majority vote.

III. DISCUSSION

Sophisticated he will vote in accordance on the first division.

On the second division, D votes A and B, A and C, and C, C, C.

and the passage of bills is decided by simple majority vote.

Theorem: If all legislators have strong separable preferences, and

Moreover, we may demonstrate the following theorem.
REFERENCES