Arbitrage and Existence of Equilibrium in Infinite Asset Markets

Donald Brown
California Institute of Technology
Stanford University

Jan Werner
University of Minnesota

SOCIAL SCIENCE WORKING PAPER 825
February 1993
Arbitrage and Existence of Equilibrium in Infinite Asset Markets

Donald Brown Jan Werner

Abstract

This paper develops a framework for a general equilibrium analysis of asset markets when the number of assets is infinite. Such markets have been studied in financial economics in the context of asset pricing theories. A distinctive feature of an equilibrium model of asset markets is that investors’ portfolio-choice sets are typically not bounded below. We prove that an equilibrium exists under a condition that markets are arbitrage-free. The markets are arbitrage-free if there is a price system under which no investor has an arbitrage opportunity. The concept of an arbitrage opportunity used in this paper differs from the standard concept on an arbitrage portfolio in financial markets which is a portfolio that guarantees a non-negative payoff in every event, a positive payoff in some event and has zero price. We provide an extensive discussion of concepts of an arbitrage opportunity.

Keywords: asset markets, arbitrage, equilibrium.

Journal of Economic Literature Classification Numbers: 021, 313.
Arbitrage and Existence of Equilibrium in Infinite Asset Markets *

Donald Brown Jan Werner

1 Introduction

Modern asset pricing theories study pricing relations arising in models of competitive asset markets. The classical Capital Asset Pricing Model of Lintner (1965) and Sharpe (1964) is an example of such a theory which derives sharp predictions about asset prices from a simple equilibrium model of asset trading. The critical assumption of the CAPM is that investors are guided in their investment decisions only by the mean and the variance of a payoff of a portfolio. An alternative asset pricing theory is the Arbitrage Pricing Theory of Ross (1976). The APT derives an (approximate) pricing relation in the limit as the number of traded assets increases indefinitely. The critical assumptions of the APT are the factor structure of asset payoffs and the absence of (approximate) arbitrage opportunities. The CAPM, and – more generally – a finite asset market model is well-understood from the point of view of the general equilibrium theory, and conditions guaranteeing the existence of an equilibrium are well-known (see Hart (1974), Hammond (1983), Nielsen (1989, 1990), Page (1987)). In contrast, the APT is in its standard derivation a partial equilibrium model with prices exogenously given (see Chamberlain and Rothschild (1983), and Chamberlain (1983) for the most comprehensive study). A general equilibrium analysis of the APT requires a countably infinite number of assets, optimizing investors, and an endogenous determination of equilibrium prices. This paper develops a framework for such an analysis.

The prototypical equilibrium model of finite asset markets which includes the CAPM as a special case is due to Hart (1974). In Hart’s model, assets are described by their end-of-period (random) payoffs. Investors trade assets at the beginning of a time period so as to maximize expected utility of a payoff of a portfolio subject to a budget constraint.

*Support from the National Science Foundation, Deutsche Forschungsgemeinschaft, and Gottfried-Wilhelm-Leibnitz-Förderpreis are gratefully acknowledged. We would like to thank C.D. Aliprantis, O. Burkinshaw, P. Henrotte, Y. Kannai, and S. LeRoy for helpful remarks. We have also received helpful comments from the editor and three anonymous referees. Typing assistance of Sally Hattenswits is much appreciated.
They may have diverse expectations about asset payoffs. The Hart’s model has the same structure as the standard Arrow-Debreu model with the only difference that agents (investors) choose portfolios instead of commodity bundles. This difference has, however, profound implications for the existence of an equilibrium problem. Since asset short-sales are permitted, sets of feasible portfolios are, in general, not bounded below. This is a consequence of the fact that typically there are portfolios with negative holdings of some assets that have positive payoffs with (subjective) probability one. An arbitrary replication of such a portfolio is feasible. It is worth pointing out that feasible portfolio set is not the entire portfolio space, if an investor’s end-of-period wealth is restricted to be non-negative. A condition that guarantees the existence of an equilibrium in a finite asset market economy is that the economy is arbitrage-free (see Werner (1987), and Nielsen (1989); for a characterization of arbitrage-free economies in terms of a condition of overlapping expectations see Hammond (1983)). An economy is arbitrage-free if there is a price system under which no investor has an arbitrage portfolio. An arbitrage portfolio is a portfolio that guarantees non-negative payoff in every event, positive payoff in some event of positive probability, and has zero or negative price.

The purpose of this paper is to extend the existence of equilibrium results to asset markets with infinitely many assets. More specifically, we extend the principle of the existence of an equilibrium in arbitrage-free economies to infinite asset markets. Our results require, however, a modification of the notion of an arbitrage opportunity. It has long been recognized in the literature on asset markets that the concept of the absence of an arbitrage opportunity as developed for finite markets is far too weak for infinite markets (see Kreps (1981)). We provide in Section 4 a detailed discussion of concepts of arbitrage. The need for a modified notion of an arbitrage opportunity in infinite markets can be loosely explained as follows: If there is an arbitrage portfolio (with non-negative payoff in every event, positive payoff in some event of positive probability, and zero or negative price), then an investor would keep increasing without a limit the amount of this portfolio she holds. This would result in an unbounded sequence of portfolios increasing her utility while being budget feasible. In finite markets whenever there is an unbounded sequence of budget feasible portfolios increasing the (expected) utility, then there must be an arbitrage portfolio (see Proposition 1 in Section 4.1). In this sense arbitrage portfolios fully characterize unbounded sequences of portfolios that increase an investor’s utility while being budget feasible. This logic breaks down in the infinite dimensional case. In Section 4 we provide an example of an investor and a price system such that there is no arbitrage portfolio but there is a way of increasing the investor’s utility without a limit at (almost) no cost. Therefore, an arbitrage opportunity in infinite markets has to be defined explicitly as a sequence of portfolios rather than a single portfolio in order to characterize opportunities of increasing an investor’s utility at zero cost.

We propose to call an arbitrage opportunity a sequence of portfolios which increase an investor’s utility indefinitely but the market value of the portfolios converges to zero or is negative. This concept is similar to the notion of approximate arbitrage in the APT (see Ross (1976)), which means a sequence of portfolios where the mean of the payoffs converges to infinity, the variance of the payoffs converges to zero, and the value of the
portfolios converges to zero. It is, however, much weaker since it bears no relation to a risk-free payoff and is utility-dependent. A price system is arbitrage-free if no investor in the market has an arbitrage opportunity, and an economy is arbitrage-free if the set of arbitrage-free prices is nonempty.

The model of this paper is an abstract equilibrium model which is an infinite dimensional extension of the model studied in Werner (1987). It looks very much like the standard equilibrium model with infinitely many commodities (see Aliprantis, Brown, and Burkinshaw (1989), and Mas-Colell and Zame (1991)) with the notable distinction that agents’ choice sets are not assumed to be bounded below. This distinction makes our analysis applicable to asset markets models. We find it appropriate to study the existence of equilibrium problem in such a general setting in order to separate complications caused by the absence of the assumption of bounded below choice sets from specific features of asset trading models. We use in our abstract model the terminology of the general equilibrium theory such as a “commodity” and a “consumption set”. Nevertheless, a reader should most naturally have an asset market interpretation in mind, and thus think about a “commodity bundle” as a portfolio of assets (i.e., a list of shareholdings of all assets) or a portfolio and a bundle of goods for current consumption. Section 6 provides an example of an infinite asset market model as a special case of the general model underlying the rest of the paper, and can be consulted for details of the suggested interpretation.

The model is presented in Section 2. Section 3 contains our main existence of equilibrium result for an economy with consumption sets which need not be bounded below. In Section 4 we introduce the concept of an arbitrage opportunity and examine its relationship with alternative concepts. In Section 5 we show that an equilibrium price system is arbitrage-free, and we give an existence of equilibrium result for an arbitrage-free economy.

Equilibrium models related to the model of this paper have been studied by Chichilnisky and Heal (1991) and Cheng (1991) without an explicit reference to the condition of no arbitrage.

2 The Model

We shall consider an exchange economy with a commodity space E. The space E is assumed to be a locally convex, topological vector space with topology $τ$. There are m consumers indexed by $i = 1, \ldots, m$. Each consumer i is described by a consumption set $X_i \subset E$, and an initial endowment $e_i \in X_i$. The preferences of consumer i are represented by a utility function $u_i : X_i \rightarrow R$. The basic assumptions about consumers' characteristics that will be maintained throughout the paper are the following:

(A1) X_i is closed, and convex.
(A2) u_i is τ-continuous, and there is $v_i \in E$ such that $u_i(x + \alpha v_i) > u_i(x)$ for every $x \in X_i$, and $\alpha > 0$.

It should be emphasized that we do not assume that the commodity space is a Riesz space or that consumption sets are the positive cone. The latter is of special importance for models of asset markets, where a commodity is a share of an asset.

We shall refer to a tuple $(X_i, u_i, e_i)_{i=1,\ldots,m}$ as an (exchange) economy. If $E = \mathbb{R}^\ell$ for some ℓ, an economy will be called finite dimensional. Otherwise, it is infinite dimensional – the case of interest.

The space of continuous linear functionals on E will be denoted by E'. E' constitutes the price space for our model with a generic element $p \in E'$ being a price system.

3 Equilibrium

Any m-tuple of consumption plans $x = (x_1, \ldots, x_m)$ such that $x_i \in X_i$ will be called an allocation. If $\sum_{i=1}^m x_i = e$, where $e = \sum_{i=1}^m e_i$ is the total endowment, then the allocation is attainable. Let A denote the set of all attainable allocations, and let $U = \{u = (u_1, \ldots, u_m) \in \mathbb{R}^m : u_i(e_i) \leq u_i(x_i), i = 1, \ldots, m \text{ for some } x = (x_1, \ldots, x_m) \in A\}$ be the set of individually rational attainable utility levels (utility set, for short).

A competitive equilibrium is an attainable allocation $x = (x_1, \ldots, x_m) \in A$ and a non-zero price $p \in E'$ such that $x_i \in B_i(p)$ and $u_i(x_i) \geq u_i(x)$ for every $x \in B_i(p)$, where $B_i(p) = \{x \in X_i : px \leq pe_i\}$ is the budget set. A quasiequilibrium is an attainable allocation $x \in A$, and a non-zero price $p \in E'$ such that $px \geq pe_i$ for every $x \in X_i$ with $u_i(x) \geq u_i(x_i)$.

The existence of equilibrium theorem requires three more assumptions in addition to assumptions A1 and A2. The first assumption is standard.

(A3) u_i is quasi-concave.

The second assumption is not unusual for equilibrium theory in infinite dimensional spaces (see Aliprantis, Brown and Burkinshaw (1989), Mas-Colell and Zame (1991)). In Section 5 we discuss a relationship between this condition and a condition of the absence of arbitrage opportunities.

(A4) The utility set U is compact.

Thirdly, we impose a condition that guarantees that preferred sets are price supported (i.e., for every $x \in X_i$, if $u_i(x') \geq u_i(x)$, then $px' \geq px$ for some $p \in E'$). Let $P_i(x)$ denote the preferred-to-x set, i.e., $P_i(x) = \{x' \in X_i : u_i(x') \geq u_i(x)\}$, for $x \in X_i$.
\((A5) \) \(\text{int}\ P_i(x) \neq \emptyset \) for every \(x \in X_i \).

We are now in a position to state our main existence theorem.

Theorem 1: *If an economy satisfies assumptions A1, A2, A3, A4, and A5 for every \(i = 1, \ldots, m \), then it has quasiequilibrium.*

The proof can be found in Appendix. The basic argument is that of Negishi which was extended to infinite dimensional economies by Bewley (1969), Magill (1981), and Mas–Colell (1986).

If a quasiequilibrium \((x, p)\) is such that \(px_i > \min pX_i \) for every \(i \), then \((x, p)\) is an equilibrium. Conditions to assure the minimum wealth constraint are standard. An important example is the condition \(e_i - \varepsilon v_i \in X_i \), for some \(\varepsilon > 0 \).

We emphasize that the assumptions of our theorem do not require utility functions to be monotonic, or the consumption sets to be bounded below. Condition A5 implies that consumption set \(X_i \) has non-empty interior ruling out the positive cone in many spaces as a possible consumption set. The positive cone is, however, not a typical choice set in asset market models. The only role of assumption A5 is to assure the price supportability of preferred sets (both for an individual consumer and for the whole economy), and could be replaced by any other condition sufficient for that (e.g., uniform properness when consumption sets are the positive cone of a Riesz commodity space). In this sense our result generalizes Theorem 7.1 in Mas-Colell and Zame (1991).

4 Arbitrage

This section is devoted to a discussion of concepts of an arbitrage opportunity. The first concept, which we call a free lunch, is an extension of the standard concept of an arbitrage portfolio in finite asset markets. We shall argue that it is inadequate for the purpose of an equilibrium analysis of infinite markets. We introduce an alternative concept and investigate its properties.

To define a free lunch we need a notion of a direction of recession of a set and of a function. Let \(C \) be a closed and convex subset of \(E \). The recession (asymptotic) cone of \(C \) is the set of all vectors \(\bar{x} \in E \) such that \(x + \lambda \bar{x} \in C \) for every \(x \in C \) and every \(\lambda \geq 0 \). The recession cone of \(C \), denoted by \(AC \), is closed and convex. We show in Appendix that \(AC = \{ \bar{x} \in E : \bar{x} = \lim \lambda_n x_n \text{ for some sequences } \{x_n\} \subset C \text{ and } \{\lambda_n\} \subset R_+ \text{ with } \lim \lambda_n = 0 \} \). An element of \(AC \) is called a direction of recession of \(C \).

Let \(f \) be a concave and continuous real-valued function defined on a convex and closed subset \(C \subset E \). A direction of recession of \(f \) is a vector \(\bar{x} \in AC \) such that \(f(x + \lambda \bar{x}) \) is a non-decreasing function of \(\lambda \) for \(\lambda \in R_+ \) and for every \(x \in C \). Equivalently, a direction of recession of \(f \) is every element of the recession cone of a level set \(\{x' \in C : f(x') \geq f(x)\} \).
(which does not depend on \(x \in C \) for a concave function). If both \(\bar{x} \) and \(-\bar{x}\) are directions of recession of \(f \), then \(\bar{x} \) is a direction in which \(f \) is constant.

Consider consumer \(i \) with utility function \(u_i \) on \(X_i \). We shall strengthen assumption A3 to:

\[(A3') \quad u_i \text{ is concave.} \]

A direction of recession of \(u_i \) which is not a direction in which \(u_i \) is constant will be called a useful commodity bundle. Let \(p \in E' \) be a price system.

Definition 1: A free lunch for consumer \(i \) (with respect to \(p \)) is a useful commodity bundle \(\hat{x} \in E \) such that \(p \hat{x} \leq 0 \).

This concept of a free lunch was introduced in Werner (1987) (under the name of arbitrage opportunity). In the context of financial asset markets, where a commodity bundle is a portfolio of assets, and the utility of a portfolio is the expected utility of its payoff, a free lunch is a portfolio with a non-negative payoff with probability one, positive payoff with positive probability, and zero or negative value (see Section 6). In this sense the concept of free lunch is a natural extension of the concept of arbitrage portfolio in asset markets.

Kreps (1981) pointed out that many consequences of the condition of the absence of free lunch do not extend to infinite dimensional economies. In accordance with this observation, concepts of an arbitrage opportunity used in the literature on infinite asset markets are different. For instance, in the context of the APT (see Ross (1976)) it is a sequence of portfolios with the mean of the payoffs converging to infinity, the variance of the payoffs converging to zero, and the value of the portfolios converging to zero.

In our context an arbitrage opportunity is defined as follows: Let \(\bar{u}_i = \sup_{x \in X_i} u_i(x) \) (\(\bar{u}_i \) can be finite or \(+\infty \)).

Definition 2: An arbitrage opportunity for consumer \(i \) (with respect to \(p \)) is a sequence of commodity bundles \(\{\hat{x}_n\} \subset E \) such that \(e_i + \hat{x}_n \in X_i \), \(\lim u_i(e_i + \hat{x}_n) = \bar{u}_i \), and \(\lim p\hat{x}_n \leq 0 \).

We shall call a price system arbitrage-free for consumer \(i \) if there is no arbitrage opportunity for \(i \).

4.1 Free lunch versus arbitrage opportunity.

In general neither the existence of a free lunch implies the existence of an arbitrage opportunity nor the converse. However, in a finite dimensional economy we have:
Proposition 1: Suppose A1, A2, and A3' hold, and $E = \mathbb{R}^e$. If $p \in \mathbb{R}^e$ admits no free lunch for consumer i, then it is arbitrage-free for i.

Proof: We first consider the case when there is no direction in which u_i is constant. Suppose that there is an arbitrage opportunity $\{\hat{x}_n\}$ for consumer i at p. Clearly $\{\hat{x}_n\}$ is unbounded. Let \bar{x} be any cluster point of $\{\frac{\hat{x}_n}{\|\hat{x}_n\|}\}$. We have $\bar{x} \neq 0$, $p\bar{x} \leq 0$ and \bar{x} is a direction of recession of u_i. Thus \bar{x} is a free lunch which contradicts the assumption.

The proof in the case when there are directions in which u_i is constant proceeds by restricting the utility function and prices to the subspace orthogonal to directions in which u_i is constant, and applying the argument above. Details are omitted. \[\Box\]

Proposition 1 does generalize to some infinite dimensional commodity spaces such as ba (the space of bounded, finitely additive set functions on \mathcal{N}), but in most infinite dimensional spaces 0 may be a cluster point of the sequence $\{\frac{\hat{x}_n}{\|\hat{x}_n\|}\}$, hence invalidating the proof of Proposition 1. In the following example the commodity space is ℓ_∞, there is no free lunch for a consumer, but there is an arbitrage opportunity.

Example 1: Let $E = \ell_\infty$ and $E' = \ell_1$. Consider the utility function $u : \ell_\infty^+ \to \mathbb{R}$ defined by $u(x) = \sum_{n=1}^{\infty} \delta^n (x_n)^{\frac{1}{2}}$ where $x = (x_1, x_2, \ldots)$, and $0 < \delta < 1$. Let $e = 0$ be the initial endowment. Every commodity bundle $\bar{x} \in \ell_\infty^+$, $\bar{x} \neq 0$, is useful, and therefore every strictly positive price system admits no free lunch. Let us consider a price system $p = (p_1, p_2, \ldots) \in \ell_1$ given by $p_n = \delta^{3n}$. We claim that p is not arbitrage-free. Let $x^k \in \ell_\infty^+$ be defined by $x^k_n = \delta^{-3n}$ for $n = k$ and zero otherwise, $k = 1, 2, \ldots$. We have $u(e + x^k) = \delta^k \delta^{-\frac{5}{2}k} = \delta^{-\frac{1}{2}k} \to +\infty$. On the other hand $px^k = \delta^k \to 0$. Thus $\{x^k\}$ is an arbitrage opportunity with respect to p.

The proof of Proposition 1 and Example 1 suggest a reason why the concept of free lunch is in general not adequate for infinite markets. It is the fact that in infinite markets (unlike in their finite counterpart) an unbounded sequence of consumptions that increases a utility may not have a corresponding useful commodity bundle.

An arbitrage-free price system admits no free lunch (in a finite or infinite dimensional economy) provided that $\lim u_i(c_i + n\bar{x}) = \bar{u}_i$, for every useful commodity bundle \bar{x}. This last condition is indispensable as illustrated by the following example:

Example 2: Let $E = \mathbb{R}^2$, $u(x_1, x_2) = \min\{x_1, x_2\}$, and $e = (2, 0)$. The price system $p = (1, 0)$ is arbitrage-free but it admits a free lunch being $\bar{x} = (0, 1)$. Note that \bar{x} is useful but $\lim u(e + n\bar{x}) = 2 < \bar{u} = +\infty$.

5. Arbitrage and Equilibrium

One of the main issues we address in this paper is a relationship between an equilibrium and the absence of arbitrage opportunities. In a finite dimensional economy every equil-
brium price system does not admit a free lunch (provided that utility functions have no half lines in indifference sets). Moreover, the existence of a price system which does not admit a free lunch is sufficient for the existence of an equilibrium (see Proposition 2 (ii), and Theorem 1 in Werner (1987)). In this section we investigate analogous results for an infinite dimensional economy using the concept of arbitrage opportunity.

We call a price system viable for consumer i, if the demand of consumer i is well-defined, i.e., there is $x_i \in B_i(p)$ such that $u_i(x_i) \geq u_i(x)$ for every $x \in B_i(p)$.

Theorem 2: Suppose $A1$, $A2$, and $A3$ hold. If $p \in E'$ is viable for consumer i, and $p e_i > min pX_i$, then p is arbitrage-free for consumer i.

Proof: Suppose the contrary. Then there is a sequence $\{x_n\}$ such that $\lim u_i(e_i + x_n) = \bar{u}_i$, and $\lim p(e_i + x_n) \leq p e_i$. Let $\bar{x} \in X_i$ be such that $p \bar{x} < pe_i$. For $0 \leq \lambda \leq 1$, $\lambda(e_i + x_n) + (1 - \lambda) \bar{x} \in X_i$. Let M be such that $u_i(x_i) < M < \bar{u}_i$. Since u_i is concave, there exists $0 < \lambda_0 < 1$ such that $\liminf u_i(\lambda_0(e_i + x_n) + (1 - \lambda_0) \bar{x}) \geq M$. For n large enough, we have $u_i(\lambda_0(e_i + x_n) + (1 - \lambda_0) \bar{x}) > u_i(x_i)$ and $p(\lambda_0(e_i + x_n) + (1 - \lambda_0) \bar{x}) < p e_i$, which contradicts the optimality of x_i in the budget set $B_i(p)$.

An immediate corollary is the following:

Corollary 1: If p is an equilibrium price system, and $p e_i > min pX_i$ for every $i = 1, \ldots, m$, then p is arbitrage-free.

We note that a price system may be arbitrage-free but not viable. This is illustrated by the following example:

Example 3: (Aliprantis, Brown, and Burkinshaw (1989), Example 3.3.7) Let the commodity space be the space of continuous functions on the interval $[0,1]$ with the sup norm, and let the price space be the space of measures on $[0,1]$. Thus $E = C[0,1]$, and $E' = ca[0,1]$. Consider a consumer with the utility function

$$u(x) = \int_0^{1/2} \sqrt{x(t)} \, dt + \frac{1}{2} \int_{1/2}^1 \sqrt{x(t)} \, dt,$$

where $x \in E_+$. Let the initial endowment $e \in E_+$ be given by $e(t) = 1$ for all $t \in [0,1]$. Let the price $p \in ca[0,1]$ be the Lebesgue measure. We claim that p is arbitrage-free for the consumer. Since

$$u(x) \leq \int_0^1 \sqrt{x(t)} \, dt \leq \left(\int_0^1 x(t) \, dt \right)^{1/2} = (px)^{1/2}$$

for every $x \in E_+$, we see that $\lim px_n = +\infty$ whenever $\lim u(e + x_n) = \bar{u} = +\infty$. Therefore p is arbitrage-free.
Applying the arguments of Aliprantis, Brown, and Burkinshaw (1989, pg. 130, and 175) one can show that the supremum of utility in the budget set \(B(p) \) is \(\sqrt{\frac{5}{8}} \), which can only be attained at the function \(x^* \) given by \(x^*(t) = \frac{5}{8} \) for \(t \in [0, \frac{1}{2}] \), and \(x^*(t) = \frac{5}{8} \) for \(t \in (\frac{1}{2}, 1] \). Clearly \(x^* \) is not in the commodity space \(E \). However, it can be approximated by a sequence of consumption plans \(\{x_n\} \subset B(p) \), so that \(\lim u(x_n) = \sqrt{\frac{5}{8}} \). Therefore the consumer's demand at \(p \) is not well-defined, i.e., \(p \) is not viable.

In the remainder of this section we investigate the sufficiency of the condition that there is a price system which is arbitrage-free for every consumer for the existence of an equilibrium. To facilitate the discussion we shall call an economy arbitrage-free if there exists a price system which is arbitrage-free for every consumer.

We shall focus our attention on assumption A4 of compactness of the utility set. The utility set is compact if and only if it is closed and bounded. In economies with consumption sets being the positive cone boundedness of the utility set is a consequence of (order) boundedness of the set of attainable allocations. In our case boundedness of the utility set is a legitimate concern, if some utility functions are unbounded from above. Unbounded from above utility functions are frequently used in finance (e.g., constant relative risk aversion utility functions). Theorem 3 shows that the utility set of an arbitrage-free economy is bounded regardless of whether utility functions are bounded from above or not.

Theorem 3: Suppose A1, A2, and A3 hold for every \(i = 1, \ldots, m \). If the economy is arbitrage-free, then the utility set is bounded.

The proof of Theorem 3 consists of three steps. The first two steps are Propositions 2 and 3 for which A1, A2, and A3' are assumed to hold for every \(i \).

Proposition 2: If \(p \) is arbitrage-free for consumer \(i \), then \(px > b \) for some \(b \) and every \(x \in P_i(e_i) \).

Proof: Suppose the contrary. Then there exists a sequence \(\{x_n\} \subset E \) such that \(e_i + x_n \in P_i(e_i) \) for every \(n \), and \(\lim nx_n = -\infty \). Let \(\alpha_n = -px_n \). For each \(n \), define the set \(W_n = \{ x \in P_i(e_i) : px \leq \sqrt{\alpha_n} \} \). We have \(P_i(e_i) \subset \bigcup_{n=1}^{\infty} W_n \). Let \(\{z_n\} \) be a sequence such that \(z_n \in W_n \) and \(\lim u_i(e_i + z_n) = \bar{u}_i \). Consider a sequence \(\{y_n\} \) defined by \(y_n = \lambda_n x_n + (1 - \lambda_n)z_n \), where \(\lambda_n = \frac{1}{1 + \sqrt{\alpha_n}} \). We have \(py_n = \lambda_n px_n + (1 - \lambda_n)pz_n \leq \lambda_n(-\alpha_n) + (1 - \lambda_n)\sqrt{\alpha_n} = 0 \). Moreover, \(u_i(e_i + y_n) \geq \lambda_n u_i(e_i + z_n) + (1 - \lambda_n)u_i(e_i + z_n) \). Since \(\lambda_n \to 0 \), we obtain \(\lim u_i(e_i + y_n) = \bar{u}_i \), and \(\{y_n\} \) is an arbitrage opportunity. This is a contradiction. \(\Box \)

Proposition 3: Suppose that the utility function \(u_i \) is unbounded, i.e., \(\bar{u}_i = +\infty \). If \(p \) is arbitrage-free for consumer \(i \), then \(\lim px_n = +\infty \) for every sequence of consumption plans \(\{x_n\} \subset X_i \) such that \(\lim u_i(x_n) = +\infty \).
Proof: Let \(\{x_n\} \subset X_t \) be a sequence such that \(\lim u_i(x_n) = +\infty \) and \(\lim p x_n < +\infty \). Let \(\hat{x}_n = x_n - e_i \), and \(\alpha = \lim p \hat{x}_n \). We have \(\alpha < \infty \). There is a sequence \(\{\gamma_n\} \subset \mathbb{R}_+ \) such that \(\lim u_i(e_i + \gamma_n \hat{x}_n) = +\infty \) and \(\gamma_n \rightarrow 0 \). Indeed, let \(\gamma_n = \frac{1}{\sqrt{u_i(x_n)}} \). Then, by concavity of \(u_i \),

\[
 u_i(e_i + \gamma_n \hat{x}_n) = u_i(\gamma_n(e_i + \hat{x}_n) + (1 - \gamma_n)e_i) \\
 \geq \gamma_n u_i(x_n) + (1 - \gamma_n)u_i(e_i) \\
 = \frac{1}{\gamma_n} + (1 - \gamma_n)u_i(e_i).
\]

Therefore \(\lim u_i(e_i + \gamma_n \hat{x}_n) = +\infty \). Since \(\lim p(\gamma_n \hat{x}_n) = 0 \), \(\{\gamma_n \hat{x}_n\} \) is an arbitrage opportunity contradicting our assumption.

We are now in a position to prove Theorem 3.

Proof: Suppose by contrary that \(U \) is unbounded. Then there exists a sequence \(\{u^n\} \subset U \) such that \(\lim u_i^n = +\infty \) for some \(i_0 \). Let \(x_i^n \in P_i(e_i) \) be such that \(u_i(x_i^n) \geq u^n_i \) and \(\sum_{i=1}^m x_i^n = e \) for every \(n \), and \(i = 1, \ldots, m \). We have \(\lim u_i(x_i^n) = +\infty \) and therefore (Proposition 3) \(\lim p x_i^n = +\infty \). By Proposition 2, \(\lim \inf p x_i^n > -\infty \) for every \(i \). Thus, we obtain a contradiction to \(p \sum_{i=1}^m x_i^n = p e < +\infty \).

If the assumptions of Theorem 3 are satisfied, the economy is arbitrage–free, and the utility set is closed, then condition A4 holds. Thus, we have the following existence of equilibrium result for an arbitrage–free economy, as an immediate corollary to Theorems 1 and 3:

Corollary 2: If an economy is arbitrage–free, satisfies assumptions A1, A2, A3', and A5 for every \(i = 1, \ldots, m \), and has closed utility set, then it has quasiequilibrium.

Closedness of the utility set is a frequent assumption in equilibrium theory with infinite dimensional commodity spaces. It is independent of the other assumptions of Corollary 2, in particular of the assumption that the economy is arbitrage–free. In the following example the economy satisfies conditions A1, A2, A3', and A5, and is arbitrage–free (and therefore has bounded utility set), but the utility set is not closed. Moreover, there is no (quasi) equilibrium.

Example 4: As in Example 3, let \(E = C[0,1] \), and \(E' = ca(0,1) \). There are two consumers, \(i = 1, 2 \), each with the consumption set being the positive cone \(E_+ \), and the endowment \(e_i \in E_+ \) given by \(e_i(t) = 1 \) for all \(t \in [0,1] \), \(i = 1, 2 \). Consumers' utility functions are:

\[
 u_i(x) = \int_0^{1/2} \sqrt{x(t)} \, dt + a_i \int_{1/2}^1 \sqrt{x(t)} \, dt, \quad i = 1, 2,
\]
for $x \in E_+$, where $a_1 = \frac{1}{2}$, and $a_2 = 2$. The economy satisfies conditions A1, A2, A3', and A5. Let the price $p \in ca[0,1]$ be the Lebesgue measure. We have shown in Example 3 that p is arbitrage-free for consumer 1. By the same argument, p is arbitrage-free for consumer 2. Therefore, the economy is arbitrage-free, and by Theorem 3, the utility set is bounded. However, the utility set is not closed (see Aliprantis, Brown, and Burkinshaw (1989), pg.130). Furthermore, there is no equilibrium in this economy.

We conclude this section with another example. The purpose of it is to underscore our claim that the concept of a free lunch is inadequate for equilibrium analysis of infinite markets. This example shows an economy in which there is a price system which admits no free lunch for every consumer, but there is no equilibrium.

Example 5: We extend Example 1 by adding one more consumer. We have $E = \ell_\infty$ and $E' = \ell_1$. Consumer 1 has consumption set $X_1 = \ell_\infty^\mathbb{N}$, initial endowment $e_1 = (1, 0, 0, \ldots)$, and utility function $u_1(x) = \sum_{n=1}^{\infty} \delta^a(x_n)^\frac{1}{2}$, where $x = (x_1, x_2, \ldots)$, and $0 < \delta < 1$. Consumer 2 has consumption set $X_2 = \ell_\infty$, initial endowment $e_2 = (1, 1, 1, \ldots)$, and utility function $u_2(x) = \sum_{n=1}^{\infty} \delta^a n \cdot x_n$. Let the price system $p = (p_1, p_2, \ldots) \in \ell_1$ be given by $p_n = \delta^a n$. Note that $u_2(x) = px$. Clearly p admits no free lunch for both consumer 1 (as argued in Example 1), and consumer 2. We claim that there is no equilibrium. One can easily show that p is the only viable price for consumer 2, and hence the only candidate for an equilibrium price. However, as shown in Example 1, p is not arbitrage-free for consumer 1, and, by Theorem 2, not viable for consumer 1. Therefore there is no equilibrium. One can also show that p is the only arbitrage-free price for consumer 2. Since p is not arbitrage-free for consumer 1, the economy is not arbitrage-free.

6 Example: Securities Market Model

In this section we present an example which illustrates that the results of the preceding sections are suitable for an application to financial markets. The example is along the lines of the securities market model of Hart (1974) but it includes infinitely many securities. We shall show that the assumptions of our existence result (Corollary 2) are satisfied in such a framework. In particular, the condition A5 of the nonempty interior of preferred sets is satisfied.

Let there be m investors and a countably infinite collection of securities indexed by $n = 1, 2, \ldots$. A typical portfolio of securities is $x = (x_1, x_2, \ldots)$ with x_n being the number of shares of security n. We shall require that $\sum_{n=1}^{\infty} |x_n| < \infty$, i.e., that the total number of shares (short or long) is finite. Thus the portfolio space is ℓ_1. Security price space is ℓ_∞ – the norm dual of ℓ_1 – and so $p = (p_1, p_2, \ldots) \in \ell_\infty$ is a list of prices of all securities with $\sup_n |p_n| < \infty$.

Security payoffs are described as follows: Let (Ω, \mathcal{F}, P) be a probability space (state space). The payoff of security n is $r_n \in L_\infty(\Omega, \mathcal{F}, P)$, i.e., an (essentially) bounded random variable r_n. To simplify notation we shall denote $L_\infty(\Omega, \mathcal{F}, P)$ by L_∞. We
assume that there is a riskless security, say security 1, with \(r_1(\omega) = 1 \) for each \(\omega \in \Omega \). Furthermore, we assume that for all \(n, r_n \in C \) for some (sup norm) bounded set \(C \subset L_\infty^+ \). Investors have homogenous expectations and they all expect security payoffs to be as described above.

Investors never plan to have negative end-of-period wealth. The feasible portfolio set of investor \(i \) is \(\Gamma = \{ x \in \ell_1 : \sum_{n=0}^{\infty} x_n r_n \geq 0 \} \), where the inequality in the definition of \(\Gamma \) is with respect to the order of \(L_\infty \), i.e., it holds with \(P \)-probability one. Initial portfolio of investor \(i \) is \(\bar{x}^i \in \Gamma \). Let \(\bar{x} = \sum_{i=1}^{m} \bar{x}^i \) denote the outstanding portfolio of securities.

Each investor has a von Neuman-Morgenstern utility function of wealth \(u_i : R_+ \rightarrow R \) and evaluates a portfolio according to the expected utility of its payoff. We assume that \(u_i \) is concave, continuous, increasing and unbounded above. For example, \(u_i \) could be a constant relative risk aversion utility function. Let \(V_i : \Gamma \rightarrow R \) be the indirect utility of a portfolio, i.e., \(V_i(x) = E u_i(\sum_{n=0}^{\infty} x_n r_n) \), where the expected value is taken with respect to the probability measure \(P \).

The securities market economy described above is an example of an abstract exchange economy of Section 2. Accordingly, an equilibrium consists of a portfolio allocation \((x^1, x^2, \ldots, x^m) \), and a price system \(p \in \ell_\infty \) such that \(\sum_{i=1}^{m} x^i = \bar{x} \) and each portfolio \(x^i \) maximizes \(V_i(x) \) over \(x \in \Gamma \) subject to the constraint \(px \leq p\bar{x} \).

A free lunch for investor \(i \) (in the sense of Definition 1) is a portfolio \(x \) such that \(\sum_{n=0}^{\infty} x_n r_n \geq 0 \), \(P(\sum_{n=0}^{\infty} x_n r_n > 0) > 0 \), and \(px \leq 0 \). This is the standard concept of finance. An arbitrage opportunity for investor \(i \) is a sequence of portfolios \(\{x^k\} \subset \ell_1 \), such that \(V_i(\bar{x}^i + x^k) \rightarrow +\infty \), and \(\lim \|px^k\| < 0 \).

Let us consider a price system \(p \in \ell_\infty \) given by \(p_n = E r_n, n = 0, 1, \ldots \). By Jensen's inequality \(V_i(x) = E u_i(\sum x_n r_n) \leq u_i(\sum x_n E r_n) = u_i(px) \). Consequently, if \(V_i(\bar{x}^i + x^k) \rightarrow +\infty \) for a sequence \(\{x^k\} \subset \ell_1 \), then \(px^k \rightarrow +\infty \), hence \(p \) is arbitrage-free for every investor. The securities market economy is arbitrage-free.

We claim that condition A5 of the nonempty interior of preferred sets is satisfied. To this end let us consider the set \(\Gamma \) of portfolios with non-negative payoffs, and a portfolio \(v = (1,0,\ldots) \) consisting of the riskless security only. We will show that \(v \in \text{int} \Gamma \), where \(\text{int} \) denotes norm interior in \(\ell_1 \). Let \(K = \sup_n \|r_n\|_\infty \). By our assumptions \(1 \leq K < \infty \). Let \(z \in \ell_1 \) be such that \(\|v - z\|_1 < \frac{1}{K} \). It suffices to show that \(z \in \Gamma \). We have \(|1 - \sum_{n=1}^{\infty} z_n r_n(\omega)| = |\sum_{n=1}^{\infty} (v_n - z_n)r_n(\omega)| \leq K \cdot \|v - z\|_1 < 1 \) holds with \(P \)-probability one. Therefore \(\sum_{n=1}^{\infty} z_n r_n(\omega) > 0 \), and \(z \in \Gamma \). Since \(x + \Gamma \subset P_i(x) \) for every \(x \in X_i \), \(P_i(x) \) has nonempty interior.

The securities market economy satisfies conditions A1 and A2 (with \(v_i = (1,0,\ldots) \)) as well. We shall demonstrate the closedness of the utility set in a special case of the Equilibrium APT model of Connor (1984). In such a case asset payoffs can be expressed in form of a factor model with finitely many factors. Specifically, let \(r_n = \sum_{j=1}^{N} \beta_{nj} f_j + \Delta_n \) holds for every \(n = 1,2,\ldots \), where \(f_j \in L_\infty \) for \(j = 1,\ldots,N \) are the factors, and \(\Delta_n \) is
the idiosyncratic risk term such that $E(\Delta_n|f_1, \ldots, f_N) = 0$ for every n. We shall assume that the economy is insurable, i.e., that for any portfolio allocation there exists another allocation that has the same factor representation and no idiosyncratic risk (see Connor (1984)). The condition of insurability can be equivalently stated in the following way: Let $M \subset \mathcal{L}_\infty$ be the linear manifold of payoffs of all portfolios of securities $\{r_n\}_n$. Let F be the finite dimensional subspace of \mathcal{L}_∞ spanned by the factors f_1, \ldots, f_N. The economy is insurable if $F \subset M$ and the payoff of the outstanding portfolio $\sum_\infty x_n r_n$ belongs to F. It is easy to see (by the argument of the second order stochastic dominance) that an equilibrium allocation of an insurable securities market economy has no idiosyncratic risk, i.e., the payoff of each individual portfolio belongs to F (see Connor (1984), Theorem 2). The same holds for each Pareto optimal portfolio allocation. Consequently the utility set of such an economy is the same as the utility set of a finite economy with N securities with payoffs f_1, \ldots, f_N. This last economy has a closed utility set (see Nielsen (1989)).
Appendix

Proof of Theorem 1: There are two cases. First, the trivial case where the initial allocation \((e_1, \ldots, e_m)\) is weakly Pareto optimal. Let \(G = \Sigma_{i=1}^m \Pi_i(e_i) - e\) where \(\Pi_i(x) = \{x' \in X_i : u_i(x') > u_i(x)\}\) for \(x \in X_i\). Clearly \(G\) is convex and has non-empty interior by assumptions A3, and A5. Weak Pareto optimality of the allocation \((e_1, \ldots, e_m)\) implies that \(0 \not\in G\). Hence by the standard separation theorem, there exists a price system \(p \in E', p \neq 0\) such that \(py \geq 0\) for every \(y \in G\). Since each utility function \(u_i\) is locally non-satiated, it follows by a standard argument that \(p\) supports \(e_i\) for every \(i = 1, \ldots, m\). Consequently, \(p\) is quasiequilibrium price system.

For the case where \((e_1, \ldots, e_m)\) is not weakly Pareto optimal, we shall follow the Negishi's approach to existence of equilibria. This argument requires a series of lemmata. For convenience, we shall assume throughout the proof that \(u_i(e_i) = 0\) for every \(i\).

Lemma 1: The utility set \(U\) satisfies the following property: there is some \(r > 0\) such that \(0 \leq z \in R^m\) and \(\|z\| \leq r\) imply \(z \in U\).

Proof of Lemma 1: Since \((e_1, \ldots, e_m)\) is not weakly Pareto optimal, there is an attainable allocation \(x \in A\) such that \(u_i(x_i) > u_i(e_i) = 0\). We set \(r = \min\{u_i(x_i) : i = 1, \ldots, m\}\).

Let \(\hat{U} = \{u \in R^m : u_i \leq u_i(x_i), i = 1, \ldots, m,\) for some \(x \in A\}\), then \(U = \hat{U} \cap R^m_+\). By assumption (A1), \(U\) is compact. Let \(\delta U = bd\hat{U} \cap R^m_+\), where \(bd\hat{U}\) denotes the boundary of the set \(\hat{U}\) in \(R^m_+\).

Lemma 2: \(\delta U\) is homeomorphic to the simplex \(\Delta\) of \(R^m\).

Proof of Lemma 2: The homeomorphism \(\phi : \Delta \to \delta U\) is given by \(\phi(s) = \rho(s)s\), where \(s \in \Delta\) and \(\rho(s) = \sup\{\alpha > 0 : \alpha s \in U\}\). A proof that \(\phi\) is a homeomorphism can be found in Moore (1975). Lemma 1 guarantees that the maps are well defined.

For each \(s \in \Delta\), let \(x^s \in A\) be an attainable allocation such that \(u_i(x^s_i) \geq \phi_i(s)\), for each \(i\). Allocation \(x^s\) is weakly Pareto optimal.

Lemma 3: There exists an open, symmetric neighborhood \(V\) of \(0\) in \(E\) such that for every \(s \in \Delta\) there exists an attainable allocation \(x \in A\) such that \(u_i(x_i + z_i) > \phi_i(s)\) for every \(z_i \in v_i + V\), and every \(i\).

Proof of Lemma 3: By assumptions A2, and A5, for every \(s \in \Delta\) there exists \(V_i^s\) - an open symmetric neighborhood of \(0\) such that \(u_i(x_i^s + z_i) > u_i(x_i^s) + \varepsilon_i^s\) for every \(z_i \in v_i + V_i^s\), for some \(\varepsilon_i^s > 0\) (e.g., \(\varepsilon_i^s = \frac{1}{2}(u_i(x_i^s + v_i) - u_i(x_i^s))\)). Since \(u_i(x_i^s) \geq \phi_i(s)\) and \(\phi\) is continuous, there is an open neighborhood \(U_s\) of \(s\) in \(\Delta\) such that \(u_i(x_i^s + z_i) > \phi_i(s)\) holds for every \(t \in U_s\), every \(i\), and every \(z_i \in v_i + V_i^s\). The family \(\{U_s\}_{s \in \Delta}\) is an open covering of \(\Delta\) which is compact. Therefore there exists a finite subcovering \(U_{s_1}, U_{s_2}, \ldots, U_{s_k}\). We have that for every \(s \in \Delta\) there exists \(x^s_j\) for \(1 \leq j \leq k\) such that \(u_i(x_i^{s_j} + z_i) > \phi_i(s)\) holds for every \(z_i \in v_i + V_i^{s_j}\), for every \(i\). Taking \(V = \bigcap_{i=1}^m \bigcap_{j=1}^k V_i^{s_j}\) we conclude the proof.
Let \(v = \sum_{i=1}^{m} v_i \). We define a price set \(P = \{ p \in E' : pv = 1 \text{ and } |pw| \leq 1 \text{ for } w \in V \} \). By Alaoglu's Theorem, the set \(P \) is compact in the weak* topology (denoted by \(w^* \)) of \(E' \). Following Moore (1975), we define for each \(s \in \Delta \),

\[
P(s) = \{ p \in P : \text{ for every allocation } x, \text{ if } u_i(x) \geq \phi_i(s), i = 1, \ldots, m, \text{ then } pz \geq 0 \text{ for } z = \sum_{i=1}^{m} x_i - e \}.
\]

Lemma 4: \(P(s) \) is non-empty and convex for \(s \in \Delta \).

Proof of Lemma 4: Let \(\Pi_i = \{ x \in X_i : u_i(x) > \phi_i(s) \} \), and \(G = \sum_{i=1}^{m} \Pi_i - e \). It follows from Lemma 3 that there is an allocation \(x \in A \) such that \(u_i(x_i + z_i) > \phi_i(s) \) for every \(z_i \in v_i + V \). Since \(\sum_{i=1}^{m} (x_i + z_i) - e = \sum_{i=1}^{m} z_i \), we have \(\sum_{i=1}^{m} z_i \in G \) for every \(z_i \in v_i + V \). Consequently \(v + V \subset G \), and \(G \) has a non-empty interior. We claim that \(0 \notin G \). Indeed, \(0 \in G \) contradicts \(\phi(s) \in \partial U \). By a separation theorem, there is \(p \neq 0 \) which separates \(G \) from 0. Clearly \(pz \geq 0 \) for every \(z \) as in the definition of \(P(s) \). It remains to show that \(p \) can be normalized so that \(p \in P \). This is done in the following way: We have shown that \(v \in G \) and \(v + V \subset G \). Therefore \(pv \geq 0 \) and \(p(v + w) \geq 0 \) for \(w \in V \). We claim that \(pv > 0 \). Otherwise \(pv = 0 \) and \(0 \leq p(v \pm w) = \pm pw \), since \(w \in V \) implies \(v \pm w \in v + V \). Consequently, \(pw = 0 \) for every \(w \in V \) which implies \(p = 0 \), a contradiction. We normalize \(p \) so that \(pv = 1 \). Then, we also have \(-1 \leq pw \leq 1\), i.e., \(|pw| \leq 1 \). The price system \(p \) normalized in the above manner belongs to \(P \), and also to \(P(s) \).

Lemma 5: For every \(p \in P(s) \), and every \(i \), if \(x_i \in X_i \), and \(u_i(x_i) \geq \phi_i(s) \), then \(px_i \geq p x_i^s \). In particular, \(p \) supports \(x^s \).

Proof of Lemma 5: Let for some \(i, x_i \in X_i \), and \(u_i(x_i) \geq \phi_i(s) \). Consider an allocation \(x \) defined by \(x_j = x_j^s \) for \(j \neq i \) and \(x_i = x_i \). For every \(j \), \(u_j(x_j) \geq \phi_j(s) \). Let \(z = \sum_{j=1}^{m} x_j - e \). We have \(pz \geq 0 \) for \(p \in P(s) \). However, \(z = x_i - x_i^s \) and therefore \(px_i \geq px_i^s \).

Define the following correspondence:

\[
\Phi(s) = \{ (y_1, \ldots, y_m) \in R^m : y_i = p(e_i - x_i^s) \text{ for every } i, \text{ for some } p \in P(s) \}
\]

Lemma 6:

(i) The range of \(\Phi \) is bounded.

(ii) \(\Phi \) has closed graph, and is convex valued.

Proof of Lemma 6:

(i) Suppose not, then there are sequences \(\{y^n\} \subset R^m \), \(\{s_n\} \subset \Delta \), and \(\{p_n\} \subset E' \) such that \(||y^n|| \to +\infty \) and \(y_i^n = p_n(e_i - x_i^n) \). We have \(p_n e = \sum_{i=1}^{m} p_n x_i^n \) and \(\sum_{i=1}^{m} y_i^n = 0 \).

15
But $p_n e$ is bounded because $p_n \in P$, and P is w^*-compact. Moreover, $p_n x_i^n$ is uniformly bounded above. Indeed, let $x_i \in X_i$ be such that $u_i(x_i) = \max \{ u_i : u_i \in U \}$. Since p_n supports x_i^n, we have $p_n x_i^n \leq p_n x_i$, for every n. However, $p_n x_i$ is bounded above by the same argument as above. Therefore $p_n x_i^n$ is uniformly bounded above and below which contradicts $|y_i^n| \to +\infty$ for some i_0. Hence $y_i \in \Phi(s)$ implies $|y_i| \leq \delta$ for some $\delta > 0$ and every i and $s \in \Delta$.

(ii) Let $y = \lim y^n, s = \lim s^n$, and $y^n \in \Phi(s^n)$. We shall prove that $y \in \Phi(s)$. Since P is w^*-compact, we may assume that there is $p \in P$ such that $p_n \to p$ in w^*-topology. By assumption A2, $u_i(x_i^n + \varepsilon v_i) > u_i(x_i^n) \geq \phi_i(s)$ for $0 < \varepsilon \leq 1$. Since ϕ is continuous, we have $u_i(x_i^n + \varepsilon v_i) > \phi_i(s_n)$ for n large enough. Applying Lemma 5, we obtain $p_n(x_i^n + \varepsilon v_i) \geq p_n x_i^n = p_ne_i - y_i^n$. Passing to the limit, we see that $px_i^n + \varepsilon pv_i \geq pe_i - y_i$ for every $0 < \varepsilon \leq 1$. This implies, $px_i^n \geq pe_i - y_i$. Since $\Sigma_{i=1}^n y_i = 0$ and $\Sigma_{i=1}^n x_i^n = \Sigma_{i=1}^n e_i$, we obtain $y_i = p(e_i - x_i^n)$.

It remains to show that $p \in P(s)$. Let x be an allocation such that $u_i(x_i) \geq \phi_i(s)$ for every i, and let $z = \Sigma_{i=1}^n x_i - e$. By assumption A2, $u_i(x_i + \varepsilon v_i) > u_i(x_i)$ for every $0 < \varepsilon \leq 1$. By continuity of ϕ, we obtain $u_i(x_i + \varepsilon v_i) = \phi_i(s_n)$ for large n, and every i. Since $p_n \in P(s_n)$, we have $p_n z + \varepsilon pv \geq 0$. Passing to the limit, $pz + \varepsilon pv \geq 0$ for every p. Therefore $pz \geq 0$ and $p \in P(s)$.

The rest of the proof of Theorem 1 is a standard application of Kakutani’s fixed point theorem to show that $0 \in \Phi(\bar{s})$ for some $\bar{s} \in \Delta$. The details of the argument can be adopted from the proof of Theorem 3.5.12 in Aliprantis, Brown, and Burkinshaw (1989). The only point which requires clarification is the proof that if $s_i = 0$ for some $s \in \Delta$, then $pe_i - px_i^s \geq 0$ for $p \in P(s)$. In our case, if $s_i = 0$ then $\phi_i(s) = 0 = u_i(e_i)$. The inequality $pe_i - px_i^s \geq 0$ follows therefore from Lemma 5.

Clearly if $0 \in \Phi(\bar{s})$ then the attainable allocation x^s is a quasiequilibrium with some price $p \in P(\bar{s})$.

Recession (asymptotic) cone of a set.

Let C be a closed and convex subset of E. The recession cone of C is $AC = \{ \bar{x} \in E : x + \lambda \bar{x} \in C \text{ for every } x \in C \text{ and } \lambda \geq 0 \}$. The following is true:

1. $AC = \{ \bar{x} \in E : \bar{x} + C \subseteq C \}$,
2. $AC = \{ \bar{x} \in E : x + \lambda \bar{x} \in C \text{ for every } \lambda \geq 0 \}$ for arbitrary $x \in C$,
3. $AC = \cap_{\lambda > 0} \lambda (C - \{ x \})$ for $x \in C$, and therefore AC is closed.

Lemma: For a closed and convex set C, $AC = \{ \bar{x} \in E : \bar{x} = \lim_n \lambda_n x_n \text{ for some sequences } \{ x_n \} \subseteq C \text{ and } \{ \lambda_n \} \subseteq R_+ \text{ with } \lambda_n \to 0 \}$.

16
Proof: Let \(\bar{x} \in AC \). Clearly \(x + n\bar{x} \in C \) for every \(n \) and \(\bar{x} = \lim_{n \to \infty} \frac{1}{n} (x + n\bar{x}) \). Conversely, let \(\bar{x} = \lim \lambda_n x_n \) for some \(\{x_n\} \subset C \) and \(\lambda_n \to 0 \). For \(n \) large enough, \(\lambda_n < 1 \) and, by convexity of \(C \), \(\lambda_n x_n + (1 - \lambda_n)x \in C \) for every \(x \in C \). By closedness, taking limits as \(n \to \infty \), we obtain \(\bar{x} + x \in C \), i.e., \(\bar{x} \in AC \).
References

